基于生物寄生行为的双种群粒子群算法
DOI:
CSTR:
作者:
作者单位:

华南理工大学工商管理学院

作者简介:

秦全德

通讯作者:

中图分类号:

基金项目:

;高等院校博士学科点专项基金


Two-population particle swarm optimization algorithm based on bioparasitic
behavior
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    在分析生物共生关系的基础上, 将兼性寄生行为的机制嵌入粒子群算法中, 构建了一种由宿主群和寄生群
    两个种群组成的粒子群算法—–PSOPB. 该算法中两个种群间隔一定的迭代次数并按个体适应度的大小排序, 相互
    交换粒子. 为了体现“优胜劣汰”的生物进化法则, 宿主群中适应度较差的一半粒子被淘汰, 而由重新初始化的粒子代
    替以维持群体规模不变. 标准测试函数的仿真结果表明了PSOPB 算法的有效性.

    Abstract:

    Based on the analysis of biological symbiotic relationship, the mechanism of facultative parasitic behavior is
    incorporated into the particle swarm optimization(PSO) to propose a two-population PSO model called particle swarm
    optimization based on parasitic behavior(PSOPB), which consists of the host and the parasite population. In this model,
    the two populations exchange particles according to individual’s fitness value sorted in a certain number of iterations. The
    parasitic population gets the particles with good fitness, whereas the particles with poor fitness belong to the host. In order
    to embody the rule of survival of the fittest in biological evolution, the particles with poor fitness in the host population are
    removed and replaced by the re-initialization of the particles in order to maintain constant population size. The experiment
    results of some benchmarks show the effectiveness of PSOPB.

    参考文献
    相似文献
    引证文献
引用本文

秦全德 李荣钧.基于生物寄生行为的双种群粒子群算法[J].控制与决策,2011,26(4):548-552

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2010-01-21
  • 最后修改日期:2010-04-12
  • 录用日期:
  • 在线发布日期: 2011-04-20
  • 出版日期:
文章二维码