基于强基因模式组织算法的VRPTW研究
DOI:
CSTR:
作者:
作者单位:

1. 武汉科技大学
2.

作者简介:

汪勇

通讯作者:

中图分类号:

基金项目:

基于情景演变的非常规突发事件应急决策的关键支撑技术研究;基因规划及其物流配送实时VRP求解


Research on vehicle routing problem with time window based on strong gene schema combination algorithm
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    提出一种强基因模式组织算法, 给出了强基因模式、连续模式以及对称模式的定义, 使用节约法提取强基
    因模式. 设计了选择、变异和模式重组算子, 同时建立了以运输成本为目标、具有时间窗等约束的车辆路径问题模
    型. 将该算法与改进的遗传算法、改进的差分进化算法和节约法对模型进行仿真实验. 结果表明, 强基因模式的应用
    及模式重组算子大大缩小了解的搜索空间, 提高了算法的收敛速度和解的精度, 其性能优于其他3 种算法.

    Abstract:

    A method named strong gene schema combination algorithm(GSCA) is proposed based on evolutionary
    algorithm, which gives the definitions of strong gene schema, continuous schema and symmetrical schema. Then the strong
    gene schemas are extracted by using saving algorithm. Operators of selection, mutation and schema recombination are
    designed. At the same time, the mathematical model of vehicle routing problem is established with the goal of transportation
    cost and the restraints of customer requirements, truckload ability and time window(VRPTW). The effect of GSCA compared
    with improved genetic algorithm(IGA), improved differential evolution algorithm(IDEA) and saving algorithm(SA) for
    capturing the global optimum is tested on the VRPTW model in Matlab. The results show that the application of strong
    gene schema and the operator of schema recombination reduce the number of searches greatly within the solution space and
    enhance the convergence capability and the precision of the solution, and its performance is demonstrated better than the
    compared three algorithms.

    参考文献
    相似文献
    引证文献
引用本文

汪勇 杨海琴 张瑞军.基于强基因模式组织算法的VRPTW研究[J].控制与决策,2011,26(4):606-610

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2010-02-09
  • 最后修改日期:2010-06-20
  • 录用日期:
  • 在线发布日期: 2011-04-20
  • 出版日期:
文章二维码