基于自适应分组的大规模路径覆盖测试数据进化生成
DOI:
CSTR:
作者:
作者单位:

1. 中国矿业大学信电学院自动化研究所
2. 中国矿业大学信电学院硕研07-5班

作者简介:

巩敦卫

通讯作者:

中图分类号:

基金项目:

江苏省“六大人才高峰”高层次人才项目;江苏省“333高层次人才培养工程”项目


Evolutionary generation of test data for many paths coverage based on
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    复杂软件大规模路径覆盖测试数据生成问题普遍存在, 但缺乏有效的解决方法, 为此提出一种基于自适应
    分组的大规模路径覆盖测试数据进化生成方法. 在进化过程中, 通过合并满足条件的组, 将测试数据生成问题转化为
    数量不断减少的约束多目标优化问题, 采用多种群遗传算法加以解决, 并给出了合并后的种群形成策略. 将所提出的
    方法应用于基准测试程序, 结果表明可以大大减少测试数据生成时间, 为提高软件测试效率提供了一条可行途径.

    Abstract:

    Complicated software often contains many paths, and there is few effective method of generating test data to
    cover these paths up to present. Therefore, a method of evolutionary generation of test data for many paths coverage based
    on adaptive grouping is presented. During the process of evolution, the groups satisfying given conditions are merged
    based on the similarity. Then the problem of generating test data is transformed into multi-objective optimization problems
    with constraints whose number decreases gradually. A multi-population genetic algorithm is employed to solve the above
    problems, especially, the strategy of forming new populations after merging some groups is presented. The proposed method
    is applied to one benchmark program, and the experimental results show that, the method can decrease the time spent in
    generating test data greatly, and provides a feasible approach to improve the efficiency of software testing.

    参考文献
    相似文献
    引证文献
引用本文

巩敦卫 张婉秋.基于自适应分组的大规模路径覆盖测试数据进化生成[J].控制与决策,2011,26(7):979-983

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2010-04-06
  • 最后修改日期:2010-06-23
  • 录用日期:
  • 在线发布日期: 2011-07-20
  • 出版日期:
文章二维码