基于类-属性关联度的启发式离散化技术
DOI:
CSTR:
作者:
作者单位:

淡江大学

作者简介:

周世昊

通讯作者:

中图分类号:

基金项目:


Heuristic discretization technique based on the class-attribute
interdependence
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    连续属性离散化在数据挖掘、机器学习和人工智能等领域起着重要的作用. 鉴于此, 提出一种基于类-属性
    关联度的启发式离散化技术. 该技术定义了一个新的离散化标准, 根据数据本身的特性选择最佳断点, 克服了目前最
    先进自顶向下离散化方法存在的缺陷. 基于粗糙集理论中变精度粗糙集模型, 提出一种新的不一致衡量标准, 能够有
    效地控制离散化所产生的信息丢失, 允许数据存在适当的分类错误度. 实验结果和统计性分析表明, 所提出的技术显
    著地提高了J4.8 决策树和SVM分类器的学习精度.a

    Abstract:

    Discretization algorithms play an important role in many areas such as data mining, machine learning and artificial
    intelligence. Therefore, a heuristic discretization technique based on the class-attribute interdependence is proposed. A new
    discretization criterion is defined, which selects best cut points in terms of characteristics of the data itself and overcomes the
    existing deficiencies of state-of-the-art top-down discretization methods. A novel measure of inconsistency based on variable
    precision rough sets(VPRS) model is developed, which effectively controls information loss generated by discretization
    and allows an adaptive degree of misclassification. Empirical experiments and statistical analysis show that the proposed
    technique generates a better discretization scheme which significantly improves the accuracy of classification by running
    J4.8 and SVM.

    参考文献
    相似文献
    引证文献
引用本文

周世昊 倪衍森.基于类-属性关联度的启发式离散化技术[J].控制与决策,2011,26(10):1504-1510

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2010-07-22
  • 最后修改日期:2010-11-20
  • 录用日期:
  • 在线发布日期: 2011-10-20
  • 出版日期:
文章二维码