基于图知识迁移的蚁群算法参数选择
DOI:
CSTR:
作者:
作者单位:

中国矿业大学 信电学院

作者简介:

王雪松

通讯作者:

中图分类号:

基金项目:

国家自然科学基金;教育部新世纪优秀人才支持计划;霍英东教育基金会青年教师基金


Parameters Selection for Ant Colony Algorithms Based on Graph Knowledge Transfer
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    同时考虑蚁群算法的所有运行参数, 提出一种基于图知识迁移的蚁群算法参数选择方法. 首先, 将包含知识(蚁群算法的运行参数) 的源任务映射到一个高维的迁移空间, 并通过迁移权值连接不同的源任务, 构造一个模型迁移图; 然后, 扩展模型迁移图使其包含目标任务, 并利用图论的知识学习迁移函数; 最后, 通过最小二乘法自主地给目标任务分配一个优化的运行参数组合. 机器人路径规划问题的仿真结果验证了该方法的智能性、快速性与合理性.

    Abstract:

    A kind of parameters selection for ant colony algorithms(ACAs) based on graph knowledge transfer is proposed,
    where all of running parameters are taken into account simultaneously. Firstly, all source tasks containing knowledge (running parameters for ACAs) are mapped onto a high-dimensional transfer space, and transfer weights are used to connect these source tasks. In this way, a model transfer graph is thus constructed. Then, the model transfer graph is extended to include a target task and a transfer function can be obtained according to a graph theory. Finally, a group of optimal parameters for the target task can be automatically determined by using a least-squares method. Simulation results involving a robot path planning problem show the intelligence, rapidness and reasonability of the proposed method.

    参考文献
    相似文献
    引证文献
引用本文

王雪松 潘杰 程玉虎.基于图知识迁移的蚁群算法参数选择[J].控制与决策,2011,26(12):1855-1860

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2010-08-18
  • 最后修改日期:2010-11-15
  • 录用日期:
  • 在线发布日期: 2011-12-20
  • 出版日期:
文章二维码