一种改进的多目标粒子群优化算法及其应用
DOI:
CSTR:
作者:
作者单位:

作者简介:

冯琳

通讯作者:

中图分类号:

TP301.6

基金项目:

国家高技术研究发展计划


An improved multi-objective particle swarm optimization algorithm and its application
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对多目标粒子群优化算法在求解约束优化问题时存在难以兼顾收敛性能和求解质量这一问题, 提出一种
    基于免疫网络的改进多目标粒子群优化算法. 该算法通过免疫网络互通种群最优信息达到粒子群算法与人工免疫网
    络算法的协同搜索, 同时给出了速度迁移策略、自适应方差变异策略和基于聚类的免疫网络策略. 最后将所提出的
    方法应用于求解电弧炉供电优化模型, 达到了减少电量消耗、缩短冶炼时间、延长炉衬使用寿命的目的, 同时表明了
    该算法的有效性.

    Abstract:

    Considering that the multi-objective particle swarm optimization(MOPSO) algorithm can not give
    simultaneously attention to convergence performance and solutions quality when it deals with constrained optimization
    problems, an improved MOPSO algorithm based on immune network(IN-MOPSO) is proposed. In IN-MOPSO, the
    information of populations exchange through immune network in IN-MOPSO in order to achieve cooperative search of
    both MOPSO and artificial immune network(AIN) for solution space. Meanwhile, an improved migration method of particle
    velocity, an improved adaptive variance mutation method and clustering immune network are proposed in order to enhance
    the function of MOPSO and AIN. The global convergence properties and convergence rate of the improved algorithm are
    analyzed and described. Finally, the algorithm is applied to optimize the steelmaking process in practice, which reduces
    the electric energy consumption, shortens smelting time and improves lifetime of the furnace lining. The result shows the
    effectiveness of the algorithm.

    参考文献
    相似文献
    引证文献
引用本文

冯琳 毛志忠 袁平.一种改进的多目标粒子群优化算法及其应用[J].控制与决策,2012,27(9):1313-1319

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2011-08-04
  • 最后修改日期:2011-10-26
  • 录用日期:
  • 在线发布日期: 2012-09-20
  • 出版日期:
文章二维码