振荡型GM(1,1)幂模型及其应用
DOI:
CSTR:
作者:
作者单位:

浙江财经大学

作者简介:

王正新

通讯作者:

中图分类号:

N941.5

基金项目:

国家自然科学基金项目(71101132).


Oscillating GM(1,1) power model and its application
Author:
Affiliation:

School of Economics and International Trade,Zhejiang University of Finance and Economics,

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对现实世界广泛存在的小样本振荡序列建模和预测问题, 提出含有系统延迟和时变参数的振荡型
    GM(1,1) 幂模型. 给出最小二乘准则下的两级参数包计算公式, 在此基础上构建非线性优化模型以寻求最佳幂指
    数和时间作用参数, 以此识别原始数据所蕴含的振荡特征. 将该模型应用于应急资源需求预测, 并将建模结果与传
    统GM(1,1) 幂模型、ARIMA 和EMD-ARIMA 方法进行比较, 结果表明振荡型GM(1,1) 幂模型具有较高的精度.

    Abstract:

    In view of the problem of modeling and forecasting for small sample oscillating series, which exists widely in the
    real world but to be paid less attention by people, this paper proposed oscillating GM(1,1) power model with system latency
    and time-varying parameters. The two ranks’parameters package formula is presented under the least squares criterion.
    On this basis, a nonlinear optimization model is employed to seek the best exponent and time interaction parameters, in
    order to identify the oscillating characteristics behind raw data. Finally, the proposed model is applied to forecast emergency
    resource demand, and the modeling precisions are compared among the traditional GM(1,1) power model, ARIMA and
    EMD- ARIMA. The results show that the oscillating GM(1,1) power model has the highest accuracy.

    参考文献
    相似文献
    引证文献
引用本文

王正新.振荡型GM(1,1)幂模型及其应用[J].控制与决策,2013,28(10):1459-1464

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2012-06-13
  • 最后修改日期:2012-08-26
  • 录用日期:
  • 在线发布日期: 2013-10-20
  • 出版日期:
文章二维码