时间序列数据降维及特征表示新方法
DOI:
CSTR:
作者:
作者单位:

1. 华侨大学 工商管理学院
2. 大连理工大学 系统工程研究所

作者简介:

李海林

通讯作者:

中图分类号:

基金项目:


Novel method of dimensionality reduction and feature representation for time series
Author:
Affiliation:

1. College of Business Administration,Huaqiao University
2. Institute of Systems Engineering,Dalian University of Technology

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    数据降维和特征表示是解决时间序列维灾问题的关键技术和重要方法, 它们在时间序列数据挖掘中起基础性作用. 鉴于此, 提出一种新的时间序列数据降维和特征表示方法, 利用正交多项式回归模型对时间序列实现特征提取, 结合特征序列长度对时间序列的拟合分析结果, 运用奇异值分解方法对特征序列进一步降维处理, 进而得到保存大部分信息且维数更低的特征序列. 数值实验结果表明, 新方法可以在维度较低的特征空间下取得较好的数据挖掘聚类和分类效果.

    Abstract:

    Dimensionality reduction and feature representation are the key technique and important methods to address the issue of dimensionality curse for time series. Meanwhile, they are a basis task in the field of time series data mining. Therefore, a novel method of dimensionality reduction and feature representation is proposed. An orthogonal polynomial regression model is used to obtain a feature sequence from an original time series. Furthermore, singular value decomposition combining with the fitting results of the feature sequence to time series is used to reduce the dimensionality of feature sequence and obtain another feature sequence with lower dimension to retain most of the information. The results of numerical experiments demonstrate that the novel method can obtain a good effect of clustering and classification in time series data mining under the space with lower dimensionality.

    参考文献
    相似文献
    引证文献
引用本文

李海林 杨丽彬.时间序列数据降维及特征表示新方法[J].控制与决策,2013,28(11):1718-1722

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2012-07-13
  • 最后修改日期:2012-11-28
  • 录用日期:
  • 在线发布日期: 2013-11-20
  • 出版日期:
文章二维码