基于非线性频谱数据驱动的动态系统故障诊断方法
CSTR:
作者:
作者单位:

1. 西安交通大学 机械制造系统工程国家重点实验室
2. 第二炮兵工程学院 101教研室

作者简介:

曹建福

通讯作者:

中图分类号:

TP277

基金项目:

陕西省科技项目(2010K08-13).


Fault diagnosis approach of dynamic system based on data driven of nonlinear spectrum
Author:
Affiliation:

1. State Key Laboratory for Manufacturing Systems Engineering,Xi’an Jiaotong University
2. Staff Office 101,The Second Artillery Engineering University

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    基于非线性频谱数据驱动方法, 研究了动态系统的故障诊断问题. 利用一维非线性输出频率响应函数提出一种非线性频谱特征提取方法, 为了提高实时性, 采用变步长自适应辨识算法进行求解; 根据估计偏差实时地改变步长, 兼顾了收敛速度与稳态误差; 获取了非线性频谱特征之后, 利用最小二乘支持向量机分类器进行故障识别. 通过对提升设备的故障诊断问题进行实验研究, 所得结果表明, 所提出的算法识别率高, 能满足在线诊断要求.

    Abstract:

    The problem of fault diagnosis for the dynamic system is studied based on the data driven method of nonlinear spectrum. An extraction method of nonlinear frequency spectrum feature is proposed by using one dimensional nonlinear output frequency response function. In order to improve timeliness, the variable step size adaptive identification algorithm is used to solve the nonlinear output frequency response function. The step size is changed according to estimating error so that convergence rate and steady state error are both considered. After obtained nonlinear frequency spectrum feature, the least square support vector machine classifier is used to fault identification. The fault diagnosis of hoisting equipment is researched, and experiments show that the proposed algorithm has the good high recognition rate that can fulfill the demand of online diagnosis..

    参考文献
    相似文献
    引证文献
引用本文

张家良 曹建福 高峰 韩海涛.基于非线性频谱数据驱动的动态系统故障诊断方法[J].控制与决策,2014,29(1):168-171

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2012-09-03
  • 最后修改日期:2012-12-21
  • 录用日期:
  • 在线发布日期: 2014-01-20
  • 出版日期:
文章二维码