基于递归约简的在线自适应最小二乘支持向量回归机
CSTR:
作者:
作者单位:

第二炮兵工程大学 自动控制工程系

作者简介:

刘毅男

通讯作者:

中图分类号:

TP273

基金项目:

国家863 计划项目(2011AA7053016).


Online adaptive least squares support vector regression based on recursion and reduction
Author:
Affiliation:

Department of Automatic Control Engineering,The Second Artillery Engineering University

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    鉴于传统在线最小二乘支持向量机在解决时变对象的回归问题时, 模型跟踪精度不高, 支持向量不够稀疏, 结合迭代策略和约简技术, 提出一种在线自适应迭代约简最小二乘支持向量机. 该方法考虑新增样本与历史数据共同作用对现有模型产生的约束影响, 寻求对目标函数贡献最大的样本作为新增支持向量, 实现了支持向量稀疏化, 提高了在线预测精度与速度. 仿真对比分析表明该方法可行有效, 较传统方法回归精度高且所需支持向量数目最少.

    Abstract:

    The tracking accuracy of the traditional online least squares support vector regression in solving regression problem of the time-varying objects is not high enough and support vectors are not sparse. To deal with this problem, an online adaptive recursive reduced least squares support vector regression is proposed by combining with the iterative strategy and reduced technique. The method considers the constrainable impact on the existing model, which is caused by the joint action of new samples and historical data. Meantime, the training sample leading to the largest reduction in the target function is chosen as the best new support vectors. Then the regression model is simplified, and the prediction time is shortened. Finally, simulation analysis illustrates the effectiveness and feasibility of the presented method. Compared with the traditional algorithms, the method is more accurate and sparse.

    参考文献
    相似文献
    引证文献
引用本文

刘毅男 张胜修 张超.基于递归约简的在线自适应最小二乘支持向量回归机[J].控制与决策,2014,29(1):50-56

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2012-12-01
  • 最后修改日期:2013-02-27
  • 录用日期:
  • 在线发布日期: 2014-01-20
  • 出版日期:
文章二维码