一种基于互信息变量选择的极端学习机算法
CSTR:
作者:
作者单位:

大连理工大学电子信息与电气工程学部,辽宁大连116023.

作者简介:

韩敏

通讯作者:

中图分类号:

TP183

基金项目:

国家自然科学基金项目(61074096).


An extreme learning machine algorithm based on mutual information variable selection
Author:
Affiliation:

Faculty of Electronic Information and Electrical Engineering,Dalian University of Technology,Dalian 116023,China.

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对回归问题中存在的变量选择和网络结构设计问题, 提出一种基于互信息的极端学习机(ELM) 训练算法, 同时实现输入变量的选择和隐含层的结构优化. 该算法将互信息输入变量选择嵌入到ELM网络的学习过程之中, 以网络的学习性能作为衡量输入变量与输出变量相关与否的指标, 并以增量式的方法确定隐含层节点的规模.在Lorenz、Gas Furnace 和10 组标杆数据上的仿真结果表明了所提出算法的有效性. 该算法不仅可以简化网络结构, 还可以提高网络的泛化性能.

    Abstract:

    To solve the problems of variable selection and architecture design in regression, an extreme learning machine(ELM) based on mutual information is proposed, which can optimize the input layer and the hidden layer simultaneously. The mutual information variable selection is combined with ELM. The performance of the network is used as the criterion of variable selection, and the size of the hidden layer is determined by using the incremental method. Simulation results on two data sets of multivariate time series and 10 benchmark datasets show the effectiveness of the proposed algorithm. The proposed algorithm can not only compact the architecture of the network, but also improve the generalization performance.

    参考文献
    相似文献
    引证文献
引用本文

韩敏 刘晓欣.一种基于互信息变量选择的极端学习机算法[J].控制与决策,2014,29(9):1576-1580

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2013-01-21
  • 最后修改日期:2013-03-22
  • 录用日期:
  • 在线发布日期: 2014-09-20
  • 出版日期:
文章二维码