基于局部稀疏表示和线性鉴别分析的典型相关分析
CSTR:
作者:
作者单位:

电子工程学院a. 通信对抗系,b. 安徽省电子制约技术重点实验室,合肥230037.

作者简介:

夏建明

通讯作者:

中图分类号:

TP391.4

基金项目:

安徽省自然科学基金项目(1208085MF94, 1308085QF99);国家自然科学基金项目(61272333).


Canonical correlation analysis based on local sparse representation and linear discriminative analysis
Author:
Affiliation:

a. Department of Communication Countermeasure,b. Key Laboratory of Electronic Restriction of Anhui Province, Electronic Engineering Institute,Hefei 230037,China.

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为在特征融合中综合利用数据的类别信息和数据结构中所蕴含的自然鉴别信息, 提出一种基于局部稀疏表示和线性鉴别分析的典型相关分析算法. 首先利用局部稀疏表示模型, 以较小的计算复杂度获取局部稀疏重构矩阵; 然后在典型相关分析的框架中实现对局部稀疏结构保持、线性鉴别分析和组合特征相关性的联合优化, 增强了融合特征的鉴别能力. 在人工数据、多特征手写字数据、人脸数据上的实验表明了所提出方法的有效性.

    Abstract:

    The natural discriminating information contained in the data structure and class information of the datasets is very vital for the feature fusion. Then in order to utilize all the information, a canonical correlation analysis algorithm based on local sparse representation and linear discriminative analysis is proposed. Firstly, the local sparse representation method is utilized to obtain the sparse manifold reconstruction matrix with less computational complexity. Then, the united optimization is realized in the canonical correlation analysis scheme to constrain the sparse reconstructive relationship among each feature set with optimizing the combined discriminability and the feature correlation simultaneously, so that the discrimination capability of the feature extracted is increased. Finally, the simulation examples on artificial dataset, multiple feature database and facial databases are presented, and the experimental results show the effectiveness of the proposed method.

    参考文献
    相似文献
    引证文献
引用本文

夏建明 杨俊安 康凯.基于局部稀疏表示和线性鉴别分析的典型相关分析[J].控制与决策,2014,29(7):1279-1284

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2013-04-14
  • 最后修改日期:2013-11-02
  • 录用日期:
  • 在线发布日期: 2014-07-20
  • 出版日期:
文章二维码