基于置信优势关系的粗糙集近似模型
CSTR:
作者:
作者单位:

1. 西南交通大学信息科学与技术学院,成都610031;
2. 中国科学院重庆绿色智能技术研究院,重庆401122;
3. 重庆理工大学计算机科学与工程学院,重庆400054.

作者简介:

苟光磊

通讯作者:

中图分类号:

TP520.6080

基金项目:

国家自然科学基金项目(61073146);重庆市自然科学基金项目(cstc2012jjA40032).


Confidential dominance relation based rough approximation model
Author:
Affiliation:

1. School of Information Science and Technology,Southwest Jiaotong University,Chengdu 610031,China;
2. Chongqing Institute of Green and Intelligent Technology,Chinese Academy of Sciences,Chongqing 401122,China;
3. School of Computer Science and Engineering,Chongqing University of Technology,Chongqing 400054,China.

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    不完备有序信息处理是现实生活中的常见问题. 多种拓展优势关系及其粗糙集模型被提出并用于解决不完全的偏好决策问题, 但均未考虑序关系特性, 与现实语义存在矛盾. 对此, 提出一种置信优势关系及其粗糙集近似模型, 讨论了基于置信优势关系的粗糙集模型与已有模型的关系. 与现有的拓展关系相比, 该置信优势关系满足序关系特性, 避免了语义上的矛盾. 定理证明和实例分析表明, 置信优势关系粗糙集近似模型的近似精度和分类精度更优.

    Abstract:

    Incomplete ordered information processing is a common problem in the real life. Various extended dominance relation rough set models are already proposed to solve the incomplete ordinal decision problem. But there exits some ambivalence over the real semantics because the characteristics of the order relation are not considered. Therefore, the confidence dominance relation and its rough set approximation model are presented. Relationships between the confidential dominance relation based rough set model and existing models are discussed. Compared with the current expansion relations, confidence dominance relation fits the characteristics of the order relation to avoid semantic contradiction. Theorem proving and example analysis show that the confidential dominance relation based rough approximation model has better approximate accuracy and classification accuracy.

    参考文献
    相似文献
    引证文献
引用本文

苟光磊 王国胤 利节 吴迪.基于置信优势关系的粗糙集近似模型[J].控制与决策,2014,29(7):1325-1329

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2013-05-03
  • 最后修改日期:2013-07-08
  • 录用日期:
  • 在线发布日期: 2014-07-20
  • 出版日期:
文章二维码