基于二元语义前景关联分析的风险型多准则决策方法
CSTR:
作者:
作者单位:

华北电力大学a. 数理学院,b. 经济与管理学院,北京102206.

作者简介:

高建伟

通讯作者:

中图分类号:

N941.5

基金项目:

国家自然科学基金项目(71271083, 70971039, 71171080);教育部新世纪优秀人才计划项目(NCET-10-0375); 北京市教委共建项目;中央高校基本科研业务费专项基金重点项目(12zx08, 2014ZZ008).


Risky multi-criteria decision-making method based on two-tuple linguistic prospect related analysis
Author:
Affiliation:

a. School of Mathematical & Physical Science,b. School of Economics and Managment,North China Electric Power University,Beijing 102206,China.

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对准则值为二元语义、准则权系数完全未知的风险型多准则决策问题, 提出一种基于二元语义前景关联分析的决策方法. 该方法通过确定二元语义正、负理想方案, 计算二元语义关联系数; 分别以正、负理想方案为参考点, 计算各准则下各方案的二元语义前景值, 构建前景决策矩阵; 进而依据各准则的灰色均值关联度确定准则权系数, 通过二元语义相对前景关联度对方案进行排序. 最后的实例分析表明了所提出方法的有效性.

    Abstract:

    The risky multi-criteria decision-making problem is studied, where the criteria values of the alternatives are twotuple linguistic and criteria weighted coefficient is completely unknown. By using the prospect theory and grey relation analysis approach, a decision-making approach based on the two-tuple linguistic prospect relational analysis is proposed. Firstly, the two-tuple linguistic positive and negative ideal solutions are determined and the corresponding two-tuple linguistic correlation coefficients are calculated. Then, the prospect decision-making matrix is constructed by calculating the two-tuple linguistic prospect value of each alternative, which is based on the positive and negative ideal solutions as the reference point. Furthermore, the criteria’s weighted coefficient based on the grey average relational degree is calculated. These alternatives can be ordered by comparing the two-tuple linguistic relative prospect grey relational degree. Finally, an example analysis shows the effectiveness of the proposed method.

    参考文献
    相似文献
    引证文献
引用本文

谷云东 高建伟 刘慧晖.基于二元语义前景关联分析的风险型多准则决策方法[J].控制与决策,2014,29(9):1633-1638

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2013-06-02
  • 最后修改日期:2013-09-13
  • 录用日期:
  • 在线发布日期: 2014-09-20
  • 出版日期:
文章二维码