倾转旋翼机飞控系统的变精度粗糙集-OMELM故障诊断方法
CSTR:
作者:
作者单位:

1. 西北工业大学自动化学院,西安710129;
2. 西安建筑科技大学机电工程学院,西安710055.

作者简介:

陈晓

通讯作者:

中图分类号:

V249

基金项目:


Fault diagnosis for tilt-rotor aircraft flight control system based on variable precision rough set-OMELM
Author:
Affiliation:

1. College of Automation,Northwestern Poly-technical University,Xi’an 710129,China;
2. School of Mechanical and Electrical Engineering,Xi’an University of Architecture and Technology,Xi’an 710055,China.

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    结合变精度粗糙集(VPRS) 和优化极限学习机(OMELM) 诊断算法的优点, 将变精度粗糙集引入OMELM中, 提出变精度粗糙集-OMELM故障诊断方法, 用于诊断倾转旋翼机过渡模式下飞控系统的故障. 首先根据采集的倾转 旋翼机多故障输出信号的数据特点, 提出一种属性约简算法, 定义了一种新的变精度粗熵; 然后从信息论互信息增量 的角度定义属性重要性, 构造OMELM分类器并对约简后的属性特征进行故障多分类; 最后以XV-15 进行验证, 结果表明所提出的方法平均辨识率高、诊断时间短.

    Abstract:

    Integrating the advantages of the variable precision rough set(VPRS) and optimization method based extreme learning machine(OMELM), a method of variable precision rough set-OMELM is proposed to diagnose the failure of the tiltrotor aircraft flight control system. An attribute reduction algorithm is presented according to data collection characteristics of fault output signals. The attribute reduction algorithm defines a variable precision rough entropy. The attribute importance is defined from the perspective of mutual information increment in information theory. The OMELM classifier is constructed to classify the reduction attribute feature. Finally, simulation is carried out based on XV-15, and the results show the high average recognition rate and the short diagnosis time of the proposed method.

    参考文献
    相似文献
    引证文献
引用本文

陈晓 王新民 黄誉 王晓燕.倾转旋翼机飞控系统的变精度粗糙集-OMELM故障诊断方法[J].控制与决策,2015,30(3):433-440

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2013-11-08
  • 最后修改日期:2014-04-08
  • 录用日期:
  • 在线发布日期: 2015-03-20
  • 出版日期:
文章二维码