一种深度扩展记忆的仿人粒子群算法仿真分析
CSTR:
作者:
作者单位:

武汉大学自动化系,武汉430072.

作者简介:

唐若笠

通讯作者:

中图分类号:

TP18

基金项目:

国家自然科学基金项目(61201168);中央高校基本科研业务费专项资金项目(121031).


Simulation analysis of human simulated PSO based on deep extended memory
Author:
Affiliation:

Department of Automation,Wuhan University,Wuhan 430072,China.

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    从仿生学和心理学角度出发, 提出一种深度扩展记忆的仿人粒子群算法, 以解决标准粒子群及其主流改进算法易陷入局部最优等问题. 算法对粒子认知进行群体共享, 并采用深度扩展记忆积累粒子认知, 通过仿人遗忘函数配置不同时期认知对当前决策的影响权重. 仿真分析表明, 所提出算法对遗忘函数和遗忘因子高度敏感, 算法寻优多维多极值函数时, 在收敛精度、成功率和优化成本等方面较标准粒子群及其改进算法有显著提升.

    Abstract:

    To solve the problem that particle swarm optimization and most of its improved algorithms are easy to fall into local convergence, standing on bionics and psychological point of view, a human simulated particle swarm optimization(HSPSO) algorithm based on deep extended memory is presented. The knowledge of each particle is shared by introducing the knowledge sharing part, which is accumulated by the deep extended memory, and the human simulated forgetting function is used to set up the weight of knowledge of different period. The simulation analysis shows that HSPSO algorithm is highly sensitive to the forgetting function and the forgetting factor, and has a better performance in convergence precision, success ratio and reducing the cost of algorithm compared to the standard PSO and its improved algorithm when applied to the optimization of multi-dimensional and multi-extreme value functions.

    参考文献
    相似文献
    引证文献
引用本文

唐若笠 方彦军 孔政敏.一种深度扩展记忆的仿人粒子群算法仿真分析[J].控制与决策,2015,30(4):630-634

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2013-11-22
  • 最后修改日期:2014-03-07
  • 录用日期:
  • 在线发布日期: 2015-04-20
  • 出版日期:
文章二维码