基于云PSO 的RVM入侵检测
CSTR:
作者:
作者单位:

1. 天津城建大学计算机与信息工程学院,天津300384;
2. 河北工业大学信息工程学院,天津300401.

作者简介:

李国栋

通讯作者:

中图分类号:

TP273

基金项目:

国家自然科学基金项目(51208168);国家星火计划项目(2014GA610018);天津市自然科学基金项目(11JCYBJC00900);河北省引进留学人员基金项目(JFS-2012-13001);天津市高等学校科技发展基金计划项目(20110814).


Intrusion detection using relevance vector machine based on cloud particle swarm optimization
Author:
Affiliation:

1. School of Computer and Information Technology,Tianjin Chengjian University,Tianjin 300384,China;
2. School of Information Engineering,Hebei University of Technology,Tianjin 300401,China.

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    入侵检测可为计算机网络信息提供安全保障, 在其方法研究中, 由于相关向量机(RVM) 具有高稀疏性且预测中使用概率因素, 在网络入侵检测中优于支持向量机. 然而RVM的核函数参数是经验估计的, 为此, 提出一种基于云模型的粒子群优化算法的RVM方法, 即采用云粒子群算法确定RVM的核参数, 构建RVM分类模型, 再采用一对一分类方法进行多类检测分类. 经入侵检测实验研究, 所得结果表明所提出的方法优于基于常规相关向量机的检测方法, 且具有更高的入侵检测精度.

    Abstract:

    Intrusion detection can protect computer network information. In the research based on this method, due to the relevance vector machine(RVM) has high sparseness and uses probability factor in predict, which is superior to the support vector machine(SVM) in the network intrusion detection. However, the kernel function parameters of RVM are estimated by experience. Therefore, a kind of RVM method based on the cloud particle swarm optimization(PSO) algorithm is proposed, which adopts the CPSO algorithm to determine the kernel parameter of RVM, then builds RVM model and uses the one-against-one classification method to finish multi-class intrusion detection. The experimental researches on intrusion detection show that the proposed method is superior to the common RVM-based detection method and has high prediction accuracy in intrusion detection.

    参考文献
    相似文献
    引证文献
引用本文

李国栋 胡建平 夏克文.基于云PSO 的RVM入侵检测[J].控制与决策,2015,30(4):698-702

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2014-01-18
  • 最后修改日期:2014-04-18
  • 录用日期:
  • 在线发布日期: 2015-04-20
  • 出版日期:
文章二维码