自适应分组混沌云模型蛙跳算法求解连续空间优化问题
CSTR:
作者:
作者单位:

东北石油大学计算机与信息技术学院,黑龙江大庆163318.

作者简介:

张强

通讯作者:

中图分类号:

TP301.6

基金项目:

国家自然科学基金项目(61170132);黑龙江省教育厅项目(12541086).


Adaptive grouping chaotic cloud model shuffled frog leaping algorithm for continuous space optimization problems
Author:
Affiliation:

School of Computer and Information Technology,Northeast Petroleum University,Daqing 163318,China.

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对经典混合蛙跳优化算法寻优精度不高和易陷入局部收敛区域的缺点, 结合云模型在定性与定量之间相互转换的优良特性, 提出一种自适应分组混沌云模型蛙跳算法. 通过反向学习机制初始化种群, 应用云模型算法对优秀子群组的收敛区域进行局部搜索更优位置, 应用混沌理论在收敛区域以外空间探索全局最优位置. 典型复杂函数测试表明, 所提出的算法能有效找出全局最优解, 适用于多峰值函数寻优.

    Abstract:

    The shuffled flog leaping algorithm for optimization in function easily falls into local optimal solution and the premature quickly converges of such shortcomings. Combined with the excellent characteristics of cloud model transformation between qualitative and quantitative, an adaptive grouping chaotic cloud model shuffled frog leaping algorithm is proposed based on the cloud model theory. The population is initialized through reverse learning mechanism, the cloud model algorithm is used to local refinement in the region of convergence in order to explore the better position, and the chaos theory is used to obtain global optimization in the space outside the convergence region in order to explore the global optimum position. The simulation results show that the proposed algorithm has fine capability of finding global optimum, especially multi-peak function.

    参考文献
    相似文献
    引证文献
引用本文

张强 李盼池.自适应分组混沌云模型蛙跳算法求解连续空间优化问题[J].控制与决策,2015,30(5):923-928

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2014-03-19
  • 最后修改日期:2014-08-18
  • 录用日期:
  • 在线发布日期: 2015-05-20
  • 出版日期:
文章二维码