基于因果影响独立模型的贝叶斯网络参数学习
CSTR:
作者:
作者单位:

1. 兰州交通大学自动化与电气工程学院,兰州730070;
2. 五邑大学轨道交通学院,广东江门529020.

作者简介:

肖蒙

通讯作者:

中图分类号:

TP181

基金项目:

铁道部科技研究开发计划重点课题(2012X003-B);甘肃省自然科学基金项目(1112RJZA040).


Parameters learning of Bayesian networks based on independence of causal influence model
Author:
Affiliation:

1. School of Automation and Electrical Engineering,Lanzhou Jiaotong University,Lanzhou 730070,China;
2. School of Railway Tracks and Transportation,Wuyi University,Jiangmen 529020,China.

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    基于因果影响独立模型及其中形成的特定上下文独立关系, 提出一种适于样本学习的贝叶斯网络参数学习算法. 该算法在对局部概率模型降维分解的基础上, 通过单父节点条件下的子节点概率分布来合成局部结构的条件概率分布, 参数定义复杂度较低且能较好地处理稀疏结构样本集. 实验结果表明, 该算法与标准最大似然估计算法相比, 能充分利用样本信息, 具有较好的学习精度.

    Abstract:

    Based on the independence of the causal influence model and the context-specific independent relations arising in the model, a parameters learning algorithm of Bayesian networks suiting for sample learning is proposed. Through decomposing and dimension-reducing the local probability model, the algorithm can synthesize the conditional probability distribution of the local structure with the probability distribution of the child nodes under the single parent node. The algorithm has low parameter-defining complexity and can better deal with the sparse structure sample set. Compared with the standard maximum likelihood estimation algorithm, the experimental results show that the proposed algorithm can fully extract the information from sample data and has higher learning accuracy.

    参考文献
    相似文献
    引证文献
引用本文

肖蒙 张友鹏.基于因果影响独立模型的贝叶斯网络参数学习[J].控制与决策,2015,30(6):1007-1013

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2014-04-01
  • 最后修改日期:2014-07-05
  • 录用日期:
  • 在线发布日期: 2015-06-20
  • 出版日期:
文章二维码