基于空间结构统计建模的图像分类方法
CSTR:
作者:
作者单位:

1. 湖南师范大学数学与计算机科学学院,长沙410081;
2. 中南大学信息科学与工程学院,长沙410083.

作者简介:

刘金平

通讯作者:

中图分类号:

TP391.4

基金项目:

国家自然科学基金项目(61472134, 61171192, 61272337).


Statistical modelling of spatial structures based image classification
Author:
Affiliation:

(1. College of Mathematics and Computer Science,Hu’nan Normal University,Changsha 410081,China;
2. School of Information Science and Engineering,Central South University,Changsha 410083,China.

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    提出一种基于图像空间结构统计建模的复杂纹理图像模式识别方法. 从理论上分析了复杂纹理图像空间结构的韦伯分布过程, 通过构造多尺度全向高斯导数滤波器, 获得复杂纹理图像在不同观测尺度上的全方向空间结构统计建模表征结果. 基于偏最小二乘-判决分析原理构建分类器, 实现了复杂纹理图像的分类识别. 实验结果表明, 所提出的图像空间结构统计建模方法能获得复杂纹理图像关键性的视觉感知特性, 基于该方法的图像分类准确率高且性能稳定.

    Abstract:

    A method of statistical modeling of spatial structures based complex textural image pattern recognition is presented. The Weibull distribution process of the spatial structures in the complex textural images is analyzed theoretically in advance. Subsequently, by filtering the images with a proposed filter bank of Gaussian derivative filters of multi-scale and omnidirectional, the multi-scale omnidirectional spatial structure features of the complex textural images are obtained by statistical modeling of the image’s spatial structures. Based on the principle of partial least squares discriminant analysis, the image texture classification recognition model is established, which can be used to identify the pattern of the complex texture images effectively. Experimental results show that, the proposed image statistical modeling method achieves distinctive visual perception characteristics of the complex textural images, which has strong classification ability and stable classification performance.

    参考文献
    相似文献
    引证文献
引用本文

刘金平 唐朝晖 朱建勇 谭珍.基于空间结构统计建模的图像分类方法[J].控制与决策,2015,30(6):1092-1098

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2014-04-04
  • 最后修改日期:2014-09-29
  • 录用日期:
  • 在线发布日期: 2015-06-20
  • 出版日期:
文章二维码