知识迁移极大熵聚类算法
CSTR:
作者:
作者单位:

江南大学数字媒体学院,江苏无锡214122.

作者简介:

钱鹏江

通讯作者:

中图分类号:

TP391.4

基金项目:

国家自然科学基金项目(61202311);江苏省自然科学基金项目(BK201221834);江苏省产学研前瞻性研究项目(BY2013015-02).


Knowledge transfer based maximum entropy clustering
Author:
Affiliation:

School of Digital Media,Jiangnan University,Wuxi 214122,China.

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为解决数据不足或失真等环境下传统聚类技术效果不佳的问题, 基于历史类中心和历史隶属度提出两种知识迁移机制, 并与极大熵聚类方法融合提出知识迁移极大熵聚类算法KT-MEC. KT-MEC的优点是: 利用历史知识, KT-MEC 聚类有效性和实用性明显增强; 内嵌迁移机制均不暴露源域数据, 从而拥有源域隐私保护能力; KT-MEC 基于的“参数寻优+ 聚类有效性度量”机制理论上保证其性能不差于经典极大熵算法, 避免了负迁移问题.

    Abstract:

    Classical clustering methods tend to be less effective in such situation where the data are insufficient or impure. Therefore, two knowledge transfer mechanisms for fuzzy partition clustering are devised in terms of historical cluster centers and fuzzy memberships regarding historical class centers respectively. And combining these two transfer mechanisms with the classical maximum entropy clustering(MEC) approach, the particular knowledge transfer based maximum entropy clustering(KT-MEC) algorithm is proposed. The major merits of KT-MEC lie in following three aspects. Benefiting from the auxiliary guidance of historical knowledge, the clustering effectiveness and practicability of KT-MEC are enhanced distinctly. As the couple of built-in transfer mechanisms both don’t expose the raw data in the source domain, KT-MEC is of good capability of privacy protection for the source domain. Owing to the “searching for best parameters + validity indices”mechanism, the clustering effectiveness of KT-MEC is not worse than that of MEC in theory, which avoids reliably the negative transfer risk.

    参考文献
    相似文献
    引证文献
引用本文

钱鹏江 孙寿伟 蒋亦樟 王士同 邓赵红.知识迁移极大熵聚类算法[J].控制与决策,2015,30(6):1000-1006

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2014-05-17
  • 最后修改日期:2014-08-06
  • 录用日期:
  • 在线发布日期: 2015-06-20
  • 出版日期:
文章二维码