聚类分片双支持向量域分类器
CSTR:
作者:
作者单位:

1. 西安石油大学理学院,西安710065;
2. 西安电子科技大学计算机学院,西安710071.

作者简介:

梁锦锦

通讯作者:

中图分类号:

TP301

基金项目:

国家自然科学基金项目(61373174).


Clustering piecewise double support vector domain classifier
Author:
Affiliation:

1. School of Mathematical Sciences,Xi’an Shiyou University,Xi’an 710065,China;
2. School of Computer Sciences,Xidian University,Xi’an 710071,China.

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对支持向量域分类器对大规模样本集的训练时间长且占用内存大的问题, 构造聚类分片双支持向量域分类器. 以均值聚类剖分原始空间, 并选取密度指标大的样本作为初始聚类中心; 对子空间构造双支持向量域分类器,根据样本与正负类最小包围超球的距离构造分段决策函数; 定义样本的变尺度距离, 以链接规则组合子空间的分类结果. 数值实验表明, 所提出算法的分类精度高且受参数变化的影响不大, 分类时间短且随子空间数的增加而降低.

    Abstract:

    Support vector domain classifiers have disadvantages like long training time and large memory. The clustering piecewise double support vector domain classifier(CPDSVDC) is proposed. CPDSVDC uses C means algorithm to partition the original space, and selects the initial cluster centers by samples with large density indexes. The dual support vector domain classifier is constructed in each divided subspace, and the corresponding piecewise decision function is also constructed based on the position relationship between the test sample and the two minimum enclosing spheres. The variable distance of the test sample is defined, and linking rule is used to combine classification results in all subspaces. Numerical experiments demonstrate that the CPDSVDC has high classification accuracy that varies slightly with parameters and low training time that decreases with the number of subspaces.

    参考文献
    相似文献
    引证文献
引用本文

梁锦锦 吴德.聚类分片双支持向量域分类器[J].控制与决策,2015,30(7):1298-1302

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2014-05-22
  • 最后修改日期:2014-08-25
  • 录用日期:
  • 在线发布日期: 2015-07-20
  • 出版日期:
文章二维码