一种基于椭圆RHM的扩展目标Gamma高斯混合CPHD滤波器
CSTR:
作者:
作者单位:

西安电子科技大学电子工程学院,西安710071.

作者简介:

李翠芸

通讯作者:

中图分类号:

TP391

基金项目:

国家自然科学基金项目(61372003);国家自然科学基金青年项目(61301289);国家留学基金课题项目.


A Gamma Gaussian-mixture CPHD filter based on ellipse random hypersurface models for extended targets
Author:
Affiliation:

School of Electronic Engineering,Xidian University,Xi’an 710071,China.

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对杂波环境下扩展目标形状难以估计、目标跟踪精度低等问题, 提出一种自适应估计扩展目标形状的伽玛高斯混合势概率假设密度算法(GGM-CPHD). 该算法将目标的扩展形状建模为椭圆随机超曲面模型, 并将其嵌入到GGM-CPHD 滤波器中, 更新扩展目标的质心、椭圆形状和方向等信息以完成对扩展目标的跟踪. 通过杂波环境下未知数目的扩展目标仿真实验, 表明了所提出算法在质心状态和椭圆长短轴的估计精度方面要优于传统的基于随机矩阵的伽玛高斯逆韦氏CPHD滤波器.

    Abstract:

    In view of the difficulty of estimating the shape of extended targets and the low accuracy in multiple extended target tracking in the clutters, a Gamma Gaussian-mixture cardinalized probability hypothesis density filter(GGM-CPHD) which can adaptively estimate the shape of the extended targets is proposed. Firstly, the extension of targets is modeled as an ellipse random hypersurface model, and then it is embedded into the CPHD filter. The extended targets are tracked by its centroid states, the major and minor axis and orientation of ellipse. Simulation for tracking an unknown number of targets in the clutter is made, which shows that the proposed algorithm outperforms the Gamma Gaussian inverse wishart CPHD filter based on the random matrix in estimation of extension’s major and minor axis, as well as centroid states.

    参考文献
    相似文献
    引证文献
引用本文

李翠芸 林锦鹏 姬红兵.一种基于椭圆RHM的扩展目标Gamma高斯混合CPHD滤波器[J].控制与决策,2015,30(9):1551-1558

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2014-06-05
  • 最后修改日期:2014-12-03
  • 录用日期:
  • 在线发布日期: 2015-09-20
  • 出版日期:
文章二维码