一种用于软测量建模的增量学习集成算法
CSTR:
作者:
作者单位:

天津工业大学a. 电气工程与自动化学院,b. 电工电能新技术天津重点实验室,c. 管理学院,天津300387.

作者简介:

田慧欣

通讯作者:

中图分类号:

TP206

基金项目:

国家自然科学基金项目(61403277, 61203302); 天津市应用基础与前沿技术研究计划项目(14JCYBJC18900).


An incremental learning ensemble algorithm for soft sensor modeling
Author:
Affiliation:

a. School of Electrical Engineering and Automatic,b. Tianjin Key Laboratory of Advanced Electrical Engineering and Energy Technology,c. School of Management,Tianjin Polytechnic University,Tianjin 300387,China.

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对软测量模型在实际应用中遇到的问题, 结合AdaBoost 集成学习思想, 提出适用于软测量回归的集成学习算法, 以提高传统软测量模型的精度. 为了克服模型更新技术对软测量实际应用的制约, 将增量学习机制加入软测量集成建模中, 使软测量模型具有在线实时更新的增量学习能力. 对浆纱过程使用新方法建立上浆率软测量模型, 并使用实际生产数据对模型进行检验, 检验结果表明, 该模型具有很好的预测精度, 并能够较好地实现在线更新.

    Abstract:

    Aiming at the characters and problems of the soft sensor, a soft sensor modelling method for the soft sensor regression problem based on the ensemble learning algorithm is proposed to improve the accuracy of the soft sensor. According to the shortages of soft sensor update in practical application, an incremental learning idea is added to the proposed ensemble algorithm for soft sensor modelling. The method is used to establish the soft sensor model of sizing in sizing production. The product data is used to test the model. The results show that the proposed soft sensor model can improve the prediction accuracy and realize online update better.

    参考文献
    相似文献
    引证文献
引用本文

田慧欣 李坤 孟博.一种用于软测量建模的增量学习集成算法[J].控制与决策,2015,30(8):1523-1526

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2014-06-16
  • 最后修改日期:2014-09-14
  • 录用日期:
  • 在线发布日期: 2015-08-20
  • 出版日期:
文章二维码