结合区域颜色一致性和图割的复杂场景文本分割方法
CSTR:
作者:
作者单位:

1. 西安科技大学通信与信息工程学院,西安710054;
2. 西安电子科技大学通信工程学院,西安710071.

作者简介:

刘晓佩

通讯作者:

中图分类号:

TP393.1

基金项目:

国家自然科学基金项目(61302133); 陕西省科技研究计划工业攻关项目(2014K06-37, 2013K07-35, 2015GY023).


Complex scene text segmentation method using region color consistence and graph cut
Author:
Affiliation:

1. School of Communication and Information Engineering,Xi’an University of Science and Technology,Xi’an 710054,China;
2. School of Telecommunication Engineering,Xidian University,Xi’an 710071,China.

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对复杂场景文本难以有效分割的问题, 提出一种复杂场景文本分割方法. 首先, 使用简单的线性迭代聚类(SLIC) 算法将原始图像分割为若干局部区域, 并在其区域邻接图上构建图割模型; 然后, 采用高斯混合模型(GMMs) 和支持向量机(SVM) 后验概率模型对场景文本进行建模, 并引入每个局部区域与模型之间的匹配度用于计算似然能. 为了增强GMMs的鉴别力, 在参数学习中引入模型性能描述子, 自适应地获得模型参数. 实验结果表明,所提出的算法能够较好地处理复杂场景文本分割问题, 文本的识别率得到了明显的提升.

    Abstract:

    To solve the problem of text segmentation in complex scene images, a method of complex scene text segmentation is proposed. The original image is firstly divided into some small homogeneous regions by using the simple linear iterative clustering(SLIC) algorithm, and the graph model is constructed based on the region neighborhood connection diagram. Then, Gaussian mixture models(GMMs) and support vector machine(SVM) post probability based model are proposed to make model for foreground(text), and the degree of each region’s fitness to models is introduced to calculate likelihood energy. In addition, to improve the discrimination ability of GMMs, a model performance descriptor is introduced to estimate parameters of GMMs adaptively. Experimental results show that the proposed method can deal with the problem of complex scene text segmentation efficiently, and the recognition precision rate is improved significantly.

    参考文献
    相似文献
    引证文献
引用本文

刘晓佩.结合区域颜色一致性和图割的复杂场景文本分割方法[J].控制与决策,2015,30(11):1987-1992

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2014-09-04
  • 最后修改日期:2014-11-04
  • 录用日期:
  • 在线发布日期: 2015-11-20
  • 出版日期:
文章二维码