基于互信息的选择性集成核极端学习机
CSTR:
作者:
作者单位:

大连理工大学控制科学与工程学院,辽宁大连116024.

作者简介:

韩敏

通讯作者:

中图分类号:

TP273

基金项目:

国家自然科学基金项目(61374154);国家重点基础研究发展规划项目(2013CB430403).


Selective ensemble of extreme learning machine with kernels based on mutual information
Author:
Affiliation:

School of Control Science and Engineering,Dalian University of Technology,Dalian 116024,China.

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对集成学习中的准确性和差异性平衡问题, 提出一种基于信息论的选择性集成核极端学习机. 采用具有结构简单、训练简便、泛化性能好的核极端学习作为基学习器. 引入相关性准则描述准确性, 冗余性准则描述差异性,将选择性集成问题转化为变量选择问题. 利用基于互信息的最大相关最小冗余准则对生成的核极端学习机进行选择, 从而实现准确性和差异性的平衡. 基于UCI 基准回归和分类数据的仿真结果验证了所提出算法的优越性.

    Abstract:

    Considering the accuracy and diverse balance problem of ensemble learning, a selective ensemble extreme learning machine with kernels based on mutual information is proposed. The extreme learning machine with kernels, which has characteristics of simple structure, fast training and good generalization, is chosen as the base learner. The correlation and redundancy criterion are introduced to describe the accuracy and diverse, and the selective ensemble problem is transformed as a variable problem. Then, the maximum correlation minimum redundancy criterion based on mutual information is used to select the extreme learning machine with kernels. The simulation results based on UCI benchmark regression and classification data show the advantages of the proposed algorithm.

    参考文献
    相似文献
    引证文献
引用本文

韩敏 吕飞.基于互信息的选择性集成核极端学习机[J].控制与决策,2015,30(11):2089-2092

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2014-09-18
  • 最后修改日期:2015-01-13
  • 录用日期:
  • 在线发布日期: 2015-11-20
  • 出版日期:
文章二维码