改进的灵敏度剪枝极限学习机
CSTR:
作者:
作者单位:

军械工程学院无人机工程系,石家庄050003.

作者简介:

杜占龙

通讯作者:

中图分类号:

TP206

基金项目:

总装院校科技创新工程项目(ZYX12080008).


Improved sensitivity-analysis based pruning extreme learning machine
Author:
Affiliation:

Department of UAV Engineering,Ordnance Engineering College,Shijiazhuang 050003,China.

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对极限学习机(ELM) 网络结构优化问题, 提出一种改进的灵敏度剪枝ELM(ImSAP-ELM). ImSAP-ELM 将??2 正则化因子引入SAP-ELM 中, 采用留一准则确定最优隐节点数. 推导基于奇异值分解的输出权重计算公式, 避免矩阵奇异导致求解无效的问题. 将ImSAP-ELM 用于故障预测, 利用多组同类型故障数据建立多个ImSAP-ELM 模型, 基于加权思想融合不同ImSAP-ELM 的预测值. 某型无人机发射机实例表明, 相比于ELM、OP-ELM (最优剪枝ELM) 和SAP-ELM, ImSAP-ELM 耗时最高, 但是ImSAP-ELM 的预测误差小于其他3 种方法.

    Abstract:

    Aiming at the structure optimization of the extreme learning machine(ELM), an improved sensitivity-analysis based pruning ELM(ImSAP-ELM) algorithm is proposed. The ??2-regularization factor is introduced into the SAP-ELM by using the ImSAP-ELM. The leave-one-out(LOO) criterion is utilized for selecting an appropriate number of hidden neurons. In addition, the computing expression of output weights based on singular value decomposition(SVD) is deduced, which overcomes the problem that computing result is invalid when the matrix is singular. The proposed ImSAP-ELM is applied to fault prediction. Associated with some groups of known fault data under the same fault type, a number of ImSAP-ELM based models are built. All the prediction values from different ImSAP-ELMs are fused with weighted sum. The case study on a certain unmanned aerial vehicle transmitter shows that, comparing with the ELM, the optimally pruned ELM(OP-ELM) and the SAP-ELM, though ImSAP-ELM time consuming is the highest, the prediction error of the ImSAP-ELM is lower than other 3 algorithms.

    参考文献
    相似文献
    引证文献
引用本文

杜占龙 李小民 席雷平 毛琼.改进的灵敏度剪枝极限学习机[J].控制与决策,2016,31(2):249-255

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2014-12-01
  • 最后修改日期:2015-03-30
  • 录用日期:
  • 在线发布日期: 2016-02-20
  • 出版日期:
文章二维码