基于NSST 域隐马尔可夫树模型的SAR 和灰度可见光图像融合
CSTR:
作者:
作者单位:

1. 空军工程大学防空反导学院,西安710051;
2. 空军95806 部队,北京100076.

作者简介:

刘健

通讯作者:

中图分类号:

TP312

基金项目:

国家自然科学基金青年基金项目(61309008).


Fusion technique for SAR and gray visible image based on hidden Markov model in non-subsample shearlet transform domain
Author:
Affiliation:

1. Air and Missile Defence College,Air Force Engineering University,Xi’an 710051,China;
2. Air Force 95806, Beijing 100076,China.

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对合成孔径雷达(SAR) 图像和可见光图像融合问题, 提出一种基于非下采样剪切波变换域的隐马尔可夫树模型的图像融合方法(NHMM), 图像经过非下采样剪切波变换(NSST) 分解形成一个低频子带和多个高频子带.在NSST 域中, 对低频系数采用基于标准差的融合策略; 针对高频子带, 建立NSST 域隐马尔可夫树(HMT) 模型对高频系数进行训练, 并根据梯度能量对训练后的高频系数进行选择, 最后通过NSST 逆变换得到融合图像. 实验结果表明, 所提出的方法可提高图像的融合质量, 并能降低图像噪声, 具有一定的有效性和实用性.

    Abstract:

    To exact more directional information and important detail information from the images effectively, an image fusion algorithm for synthetic aperture radar(SAR) and grayscale visible light images based on the hidden Markov model(HMM) in the non-subsample Shearlet transform(NSST) domain is proposed. In NSST domain, the low frequency factors are fused by standard deviation. Meanwhile, the hidden Markov tree(HMT) model is built to train the high frequency factors. Then the energy gradient is used to select the trained high frequency factors. Thus, the low frequency and high frequency images are fused by inverse transformation of NSST to get the final image. Finally, the simulation results show that, compared with other multi-scale HMT models and traditional NSST fusion strategy, the proposed method can promote the fusion quality and enhance the information of the images, while reducing noise as well, and also show its effectiveness and feasibility.

    参考文献
    相似文献
    引证文献
引用本文

刘健 雷英杰 邢雅琼 鹿传国.基于NSST 域隐马尔可夫树模型的SAR 和灰度可见光图像融合[J].控制与决策,2016,31(3):453-457

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2014-12-20
  • 最后修改日期:2015-03-26
  • 录用日期:
  • 在线发布日期: 2016-03-20
  • 出版日期:
文章二维码