基于改进流形距离和人工蜂群的二阶段聚类算法
CSTR:
作者:
作者单位:

长沙理工大学计算机与通信工程学院,长沙410114.

作者简介:

欧慧

通讯作者:

中图分类号:

TP18

基金项目:

湖南省自然科学基金项目(14JJ7043);湖南省教育厅重点项目(14A004).


Two-phase clustering algorithm based on the improved manifold distance and the artificial bee colony algorithm
Author:
Affiliation:

College of Computer and Communication Engineering,Changsha University of Science and Technology,Changsha 410114,China.

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    以改进的流形距离为相似度测度, 结合人工蜂群算法, 提出一种二阶段聚类算法. 首先根据局部密度、最大最小距离和近邻选择对数据集初步归类并得到簇代表点; 然后将聚类归属为优化问题, 通过改进的蜂群算法对簇代表点及没归类的样本点较快地搜索到最优聚类中心, 同时根据流形距离的全局一致性特征, 对样本进行精确的类别划分; 最后将两阶段算法综合归类. 实验结果表明, 所提出的算法可以获得良好的聚类效果.

    Abstract:

    A two-phase clustering algorithm based on the improved manifold distance as the similarity measure combined with the bee colony algorithm is proposed. Firstly, based on local density, max-min distance and neighbors selecting, data set is initialized, and the representative points are obtained. Then, the clustering algorithm is viewed as an optimization problem, in which the correctly category is obtained by getting the optimal clustering center through the improved bee colony algorithm dealing with the representative and unclassified points, and obtaining the overall consistency information of the manifold distance. Finally, the two phase algorithms are classified. Experiment results show that the proposed algorithm has better clustering results.

    参考文献
    相似文献
    引证文献
引用本文

夏卓群 欧慧 李平 武志伟 戴傲.基于改进流形距离和人工蜂群的二阶段聚类算法[J].控制与决策,2016,31(3):410-416

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2014-12-30
  • 最后修改日期:2015-05-18
  • 录用日期:
  • 在线发布日期: 2016-03-20
  • 出版日期:
文章二维码