基于高斯分布的多层无迹卡尔曼滤波算法
CSTR:
作者:
作者单位:

1. 中国科学院重庆绿色智能技术研究院自动推理与认知研究中心,重庆400714;
2. 重庆邮电大学计算机科学与技术学院,重庆400065.

作者简介:

王玉金

通讯作者:

中图分类号:

TP274

基金项目:

国家自然科学基金项目(61202131);重庆市科委基金项目(cstc2012ggB40004, cstc2014jcsfglyjs0005, cstc2014zktjccxyyB0031);中国科学院“西部之光”项目.


Multi-layer unscented Kalman filtering algorithm based on Gaussian distribution
Author:
Affiliation:

1. Chongqing Key Laboratory of Automated Reasoning and Cognition,Chongqing Institute of Green and Intelligent Technology,Chinese Academy of Sciences,Chongqing 400714,China;
2. College of Computer Science and Technology,Chongqing University of Posts and Telecommunications,Chongqing 400065,China.

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    在传统无迹卡尔曼滤波(UKF) 中对其估计精度和计算效率起关键作用的是采样算法, 即构造具有权重的样本点. 研究表明, 带权样本点匹配随机变量的阶矩越高滤波的精度越高, 如多项式无迹卡尔曼滤波(PUKF), 但通常此类算法的复杂度过高甚至难以求解. 为此, 基于高斯分布结合高阶矩匹配与无迹卡尔曼滤波线性扩张方
    法(LUKF), 提出一种兼顾效率和精度的高斯滤波离线算法. 实验结果表明, 所提出算法拥有比UKF 更高的估计精度和比PUKF 更好的计算效率.

    Abstract:

    The sampling algorithm of unscented Kalman filter(UKF), which selects the sigma points and their weights, plays a vital role for the accuracy and computational efficiency. It is well known that, more moments of random variables are matched, more accuracy reaches, for example, the Polynomial-extension of UKF(PUKF). However, such methods often suffer from their highly computational complexity, even worse, it is hard to get a solution. An efficient and highly accurate off-line algorithm is proposed for the Gaussian filter based on the high-order moments matching and linear-extension of UKF(LUKF). Experimental results show that the proposed algorithm has more accuracy than UKF and more computational efficiency than PUKF.

    参考文献
    相似文献
    引证文献
引用本文

刘江 王玉金 段建雷 叶松庆.基于高斯分布的多层无迹卡尔曼滤波算法[J].控制与决策,2016,31(4):609-615

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2015-01-09
  • 最后修改日期:2015-05-11
  • 录用日期:
  • 在线发布日期: 2016-04-20
  • 出版日期:
文章二维码