近邻传播观测聚类的多扩展目标跟踪算法
CSTR:
作者:
作者单位:

1. 中国民航大学天津市智能信号与图像处理重点实验室,天津300300;
2. 天津大学电子信息工程学院,天津300072.

作者简介:

章涛

通讯作者:

中图分类号:

TP391

基金项目:

国家自然科学基金项目(61471363, 61571442, 61471365, 61231017);中央高校基本科研业务费专项基金项目(3122014D006).


Multiple extended target tracking using AP clustering
Author:
Affiliation:

1. Tianjin Key Laboratory for Advanced Signal Processing,Civil Aviation University of China,Tianjin 300300,China;
2. School of Electronic Information Engineering,Tianjin University,Tianjin 300072,China.

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    由于传感器分辨率高或目标存在多个反射源等原因, 一个目标可以同时产生多个观测数据, 对于解决这种扩展目标的跟踪问题, 概率假设密度(PHD) 滤波算法是一种有效的方法. 针对扩展目标概率假设密度滤波算法中观测集合划分, 提出一种利用近邻传播聚类方法进行观测集合划分的多扩展目标跟踪算法. 实验结果表明, 所提出的方法不但能够获得正确的划分观测集合, 而且计算复杂度较已有划分方法有较大降低, 同时在多目标跟踪效果方面优于已有算法.

    Abstract:

    More than one measurement is generated by the target per scan, when the target is detected by a high resolution sensor or there are more than one measurement source on the target surface. The probability hypothesis density(PHD)  filter shows good performance to solve the problem of extended target tracking. Aiming at the measurements partitioning of multiple extended target tracking using the PHD filter, a measurement partitioning algorithm for extended target tracking based on affinity propagation(AP) clustering is proposed. Simulation results show that the proposed algorithm can reduce the computational complexity obviously, and obtain an improved performance.

    参考文献
    相似文献
    引证文献
引用本文

章涛 吴仁彪.近邻传播观测聚类的多扩展目标跟踪算法[J].控制与决策,2016,31(4):764-768

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2015-03-20
  • 最后修改日期:2015-08-05
  • 录用日期:
  • 在线发布日期: 2016-04-20
  • 出版日期:
文章二维码