基于矩阵对角化变换的高阶容积卡尔曼滤波
CSTR:
作者:
作者单位:

北京化工大学信息科学与技术学院,北京100029.

作者简介:

王建林

通讯作者:

中图分类号:

TP273

基金项目:

国家重大科学仪器设备开发专项资金项目(2012YQ090208);国家自然科学基金项目(61503019);北京市自然科学基金项目(4152041);北京高等学校青年英才计划项目(YETP0504).


High-degree cubature Kalman filter based on diagonalization of matrix
Author:
Affiliation:

College of Information Science and Technology,Beijing University of Chemical Technology,Beijing 100029, China.

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了提高高阶容积卡尔曼滤波器(CKF)的滤波性能, 提出一种基于矩阵对角化变换的高阶CKF 算法. 该算法基于高阶容积准则, 利用矩阵对角化变换代替标准高阶CKF 中的Cholesky 分解, 使得协方差矩阵分解后的平方根矩阵保留了原有的特征空间信息, 状态统计量计算更加准确, 从而提高了滤波精度; 同时, 矩阵对角化变换不要求协方差矩阵正定, 增强了算法滤波稳定性. 仿真结果表明, 所提出的算法是可行而有效的, 明显改善了标准高阶CKF 的滤波效果.

    Abstract:

    In order to improve the filtering performance of the high-degree cubature Kalman filter(CKF), a high-degree cubature Kalman filter based on the diagonalization of the matrix is proposed. Based on the high-degree cubature rule, the diagonalization of the matrix is used to take place of the Cholesky decomposition and the square-rooting matrix of the covariance can preserve the information of the original feature space, so that the state statistics can be calcuated accurately and the filtering accuracy is improved. At the same time, the diagonalization of the matrix does not require the condition that the covariance matrix must be the positive definite matrix and the stability of filtering algorithm is enhanced. The simulation results show that the proposed algorithm is feasible and effective, and it can obviously improve the fltering effect of the standard high-degree CKF algorithm.

    参考文献
    相似文献
    引证文献
引用本文

赵利强 陈坤云 王建林 于涛.基于矩阵对角化变换的高阶容积卡尔曼滤波[J].控制与决策,2016,31(6):1080-1086

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2015-04-10
  • 最后修改日期:2015-07-07
  • 录用日期:
  • 在线发布日期: 2016-06-20
  • 出版日期:
文章二维码