无线传感器网络拓扑三级分簇优化算法
CSTR:
作者:
作者单位:

1. 燕山大学电气工程学院,河北秦皇岛066004;
2. 北京市工贸技师学院轻工分院,北京100079;
3. 上海交通大学电信学院,上海200240.

作者简介:

罗小元

通讯作者:

中图分类号:

TP273

基金项目:

河北省自然科学基金项目(2012203119).


A three-layer hierarchical architecture for topology optimization clustering of wireless sensor networks
Author:
Affiliation:

1. School of Electrical Engineering,Yanshan University,Qinhuangdao 066004,China;
2. Branch of Light Industry, Beijing Industry and Trade Technicians College,Beijing 100079,China;
3. School of Electronic and Electric Engineering,Shanghai Jiaotong University,Shanghai 200240,China.

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对大规模分布式传感器网络提出一种拓扑三级分簇结构优化算法. 通过引入传感器休眠模式, 并考虑到分簇数目较多的情况, 对多个簇头节点采用生成最小刚性图的方法进行拓扑优化, 以实现传感器网络整体能量均衡,使传感器网络具有较好的连通性和鲁棒性. 仿真实验表明, 与已有相关算法相比, 采用所提出的算法可使网络延缓出现节点死亡现象, 有利于实现网络负载均衡, 并且网络中节点整体存活时间较长, 从而延长网络的生命周期.

    Abstract:

    A three-layer architecture with network clustering topology optimization for large-scale distributed wireless sensor networks is presented. By using the sensor sleep-scheduling scheme and considering many more clustering numbers, an optimal algorithm for multiple cluster heads based on minimally rigid graph is proposed. It is shown that the optimized clustering network can achieve balanced energy consumption while keeping good connectivity and robustness for the network. Simulation results show that, by adopting the proposed algorithm, the node death phenomenon can appear later than adopting some other related algorithms. It is more advantageous to realize the network load balancing as a whole. And by adopting the proposed algorithm, nodes in the network can survive longer, which shows that the proposed algorithm can prolong the network lifetime.

    参考文献
    相似文献
    引证文献
引用本文

罗小元 李昊 王金然 关新平.无线传感器网络拓扑三级分簇优化算法[J].控制与决策,2016,31(6):1099-1104

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2015-04-29
  • 最后修改日期:2015-11-10
  • 录用日期:
  • 在线发布日期: 2016-06-20
  • 出版日期:
文章二维码