多变量系统的耦合梯度辨识算法与性能分析
CSTR:
作者:
作者单位:

江南大学a. 轻工过程先进控制教育部重点实验室,b. 物联网工程学院,江苏无锡214122.

作者简介:

刘艳君

通讯作者:

中图分类号:

TP273

基金项目:

国家自然科学基金项目(61304138, 61473136, 61203111);江苏省自然科学基金项目(BK20130163).


Coupled stochastic gradient algorithm and performance analysis for multivariable systems
Author:
Affiliation:

a. Key Laboratory of Advanced Process Control for Light Industry of Ministry of Education,b. School of Internet of Things Engineering,Jiangnan University,Wuxi 214122,China.

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对多变量系统维数大、参数多、一般的辨识算法计算量大的问题, 基于耦合辨识概念, 推导多变量系统的耦合随机梯度算法, 利用鞅收敛定理分析算法的收敛性能. 算法的主要思想是将系统模型分解为多个单输出子系统,在子系统的递推辨识过程中, 将每个子系统的参数估计值耦合起来. 所提出算法与最小二乘算法和耦合最小二乘算法相比, 具有较少的计算量, 收敛速度可以通过引入遗忘因子得到改善. 性能分析表明了所提出算法收敛, 仿真实例验证了算法的有效性.

    Abstract:

    It is an issue that multivariable systems with high dimensions have many parameters, resulting in heavy computational costs in identification methods. Therefore, a coupled stochastic gradient algorithm is derived for multivariable systems based on the coupling identification concept. The identification model is decomposed into several single-output systems, and the parameter estimates are coupled during the subsystem identification by using the gradient search. The convergence properties are analyzed by using the martingale convergence theorem. Compared with the recursive least squares algorithm and the coupled least squares algorithm, the proposed algorithm has less computational load. The convergence rate can be improved by introducing a forgetting factor. Performance analysis verifies that the proposed algorithm converges. The simulation results show the effectiveness of the proposed algorithm.

    参考文献
    相似文献
    引证文献
引用本文

刘艳君 丁锋.多变量系统的耦合梯度辨识算法与性能分析[J].控制与决策,2016,31(8):1487-1492

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2015-05-06
  • 最后修改日期:2015-11-26
  • 录用日期:
  • 在线发布日期: 2016-08-20
  • 出版日期:
文章二维码