Markov 系统矩阵未知情况下的控制器设计
CSTR:
作者:
作者单位:

辽宁石油化工大学信息与控制工程学院,辽宁抚顺113001.

作者简介:

王国良

通讯作者:

中图分类号:

TP273

基金项目:

国家自然科学基金项目(61104066, 61374043, 61473140);中国博士后科学基金项目(2012M521086);辽宁省高等学校优秀人才支持计划项目(LJQ2013040);辽宁省自然科学基金项目(2014020106).


Stabilization of Markovian jump systems with unknown system matrices
Author:
Affiliation:

School of Information and Control Engineering,Liaoning Shihua University,Fushun 113001,China.

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对Markov 系统矩阵参数未知的实际情况, 提出一种基于状态反馈控制与自适应控制相结合的控制方法. 基于线性矩阵不等式技术给出相应控制器参数的求解条件. 与现有大多数自适应控制方法相比, 所提方法不仅使估计误差几乎处处有界, 而且原系统的系统状态几乎处处渐近稳定, 具有较好的收敛特性. 在所得结果的基础上, 进一步讨论了转移速率部分未知时的相关控制问题. 数值算例验证了所提出的设计方法的有效性.

    Abstract:

    For the stabilization problem of Markovian jump systems, whose system matrices are unknown, a kind of controller containing state feedback control and adaptive control simultaneously is proposed. Based on the linear inequality matrix technique, the corresponding parameters needed in the designed controller can be solved easily. Compared with some existing adaptive methods, not only the estimated errors are bounded almost surely, but also the states of the resulting closed-loop system are asymptotically stable almost surely. In this sense, the adaptive control method has a better convergence performance in terms of system states asymptotically stable in probability. Furthermore, more extension on the transition rate matrix being partially unknown is considered. A numerical example is given to illustrate the effectiveness of the proposed method.

    参考文献
    相似文献
    引证文献
引用本文

王国良 秦奋. Markov 系统矩阵未知情况下的控制器设计[J].控制与决策,2016,31(7):1265-1271

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2015-06-20
  • 最后修改日期:2015-09-10
  • 录用日期:
  • 在线发布日期: 2016-07-20
  • 出版日期:
文章二维码