系统辨识算法的复杂性、收敛性及计算效率研究
CSTR:
作者:
作者单位:

江南大学物联网工程学院,江苏无锡214122.

作者简介:

丁锋

通讯作者:

中图分类号:

TP273

基金项目:

国家自然科学基金项目(61472195).


Complexity, convergence and computational efficiency for system identification algorithms
Author:
Affiliation:

School of Internet of Things Engineering,Jiangnan University,Wuxi 214122,China.

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    实践中经常会遇到大型计算问题和优化问题, 使得求解问题算法的复杂性、计算量和计算精度等成为突出问题, 特别是大规模非线性多变量系统的辨识. 对此, 提出几个有趣的研究课题: 1) 利用信息滤波技术和多新息辨识理论研究能提高辨识精度的大规模系统辨识理论与方法; 2) 利用递阶辨识原理研究维数高、变量数目多、计算量小的多变量系统递阶辨识方法; 3) 利用鞅收敛理论建立非线性多变量系统辨识方法的收敛理论; 4) 利用并行计算与递阶计算技术提高辨识算法的计算效率, 以解决一类大规模非线性多变量系统的模型化问题.

    Abstract:

    In practice, one often encounters large-scale computational problems and optimization problems, so that the complexity, computation and computational accuracy of algorithms for solving these problems become a prominent issue, especially for the identification algorithms of large-scale nonlinear multi-variable systems. Therefore, the interesting research projects are proposed as follows: 1) the information filtering technology and the multi-innovation identification theory are used to study the identification methods for large-scale nonlinear systems, which can improve the identification accuracy; 2) the hierarchical identification principle is used to study the hierarchical identification methods for multi-variable systems with high dimensionalities and more variables so as to reduce computational complexity; 3) the martingale convergence theory is used to establish the convergence theory of the identification methods for nonlinear multi-variable systems; 4) the parallel computing and the hierarchical computation are used to enhance the computational efficiency so as to solve the modeling problems of a class of large-scale nonlinear multi-variable systems.

    参考文献
    相似文献
    引证文献
引用本文

丁锋.系统辨识算法的复杂性、收敛性及计算效率研究[J].控制与决策,2016,31(10):1729-1741

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2015-07-12
  • 最后修改日期:2016-01-18
  • 录用日期:
  • 在线发布日期: 2016-10-20
  • 出版日期:
文章二维码