基于标签随机有限集的多量测多目标跟踪算法
CSTR:
作者:
作者单位:

海军工程大学电子工程学院,武汉430033.

作者简介:

邱昊

通讯作者:

中图分类号:

TP391

基金项目:

国家863 计划项目(2014AA7014061);国家自然科学基金项目(61501484).


Multi-detection multi-target tracking with labeled random finite sets
Author:
Affiliation:

College of Electronic Engineering,Naval University of Engineering,Wuhan 430033,China.

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对一个扫描周期内单个目标可能产生多个量测的问题, 提出一种基于标签随机有限集的扩展算法. 结合脉冲扩展标签多伯努利(-GLMB) 滤波器和多量测模型, 推导出新的更新方程; 采用假设分解策略对关联过程进行降维, 避免了量测分组过程. 实验分析表明: 所提出算法能对目标数进行无偏估计, 在低探测概率条件下跟踪性能明显优于多量测概率假设密度(MD-PHD) 算法; 计算开销在量测较少时高于MD-PHD, 量测个数增加时增幅低于MD-PHD.

    Abstract:

    For the case that one target may generate multiple detections per scan, an extended method within the labeled random finite sets framework is proposed. A new update equation is derived based on the delta-generalized labeled mult- Bernoulli(delta-GLMB) filter and multi-detection model. The hypotheses decomposition strategy is employed to reduce the dimensions of association process, so that partitioning of the detections set is avoided. Experiments indicate that the proposed method can estimate the target number without bias, and significantly outperforms the multi-detection probability hypothesis density(MD-PHD) filter in low probability of detection situation. The computational cost of the proposed method is higher than MD-PHD with a few detections, and grows slowly than MD-PHD when the amount of detections increases.

    参考文献
    相似文献
    引证文献
引用本文

邱昊 黄高明 左炜 高俊.基于标签随机有限集的多量测多目标跟踪算法[J].控制与决策,2016,31(9):1702-1706

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2015-07-19
  • 最后修改日期:2015-11-25
  • 录用日期:
  • 在线发布日期: 2016-09-20
  • 出版日期:
文章二维码