基于多信号模型和盲源分离的复合故障诊断方法
CSTR:
作者:
作者单位:

1. 南京航空航天大学自动化学院,南京211106;
2. 宝山钢铁股份有限公司设备部,上海201900.

作者简介:

陆宁云

通讯作者:

中图分类号:

TP273

基金项目:

国家自然科学基金项目(61374141, 61490703).


Compound fault diagnosis method based on multi-signal model and blind source separation
Author:
Affiliation:

1. College of Automation Engineering,Nanjing University of Aeronautics & Astronautics,Nanjing 211106,China;
2. Equipment Department of Baosteel,Shanghai 201900,China.

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    利用多信号模型可简明表征系统因果关系以及盲源分离算法可提取系统本源信息的特点, 提出一种新颖有效的复合故障诊断方法. 首先, 针对复合故障下多信号模型出现冗余测试和故障模糊组的情况, 应用盲源分离算法实现测点信息的盲分离, 基于盲信号重建多信号模型的因果结构; 其次, 理论分析了该方法对复合故障具有良好的可诊断性. 轧制过程AGC系统的实验结果表明, 所提出方法对双复合故障和部分多复合故障的隔离和定位准确率可达100%.

    Abstract:

    Based on the concise and informative causality structure obtained by a multi-signal model and the source fault information extracted by a blind source separation algorithm, a novel and effective method for diagnosing compound faults is developed. For the redundant testing signals and the multiple fault ambiguity groups when applying the multi-signal model for compound fault diangosis, a blind source separation algorithm is integrated into the multi-signal model to obtain source fault information, and the causality structure of the multi-signal model is then reconstructed. It’s analyzed theoretically that the proposed method has good diagnosticability for compound faults. The results of applying the proposed compound fault diagnosis method to a hydraulic automatic gauge control(AGC) system in a rolling process show that the diagnosis accuracy rate for all simulated double or multiple compound faults can be 100%.

    参考文献
    相似文献
    引证文献
引用本文

陆宁云 孟宪锋 姜斌 赵会平.基于多信号模型和盲源分离的复合故障诊断方法[J].控制与决策,2016,31(11):1945-1952

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2015-08-10
  • 最后修改日期:2015-12-22
  • 录用日期:
  • 在线发布日期: 2016-11-20
  • 出版日期:
文章二维码