基于多种群协同微粒群优化的流数据聚类算法
CSTR:
作者:
作者单位:

中国矿业大学信息与电气工程学院,江苏徐州221116.

作者简介:

夏长红

通讯作者:

中图分类号:

TP273

基金项目:

国家自然科学基金项目(61473299);中国博士后科学基金项目(2014T70557, 2012M521142);江苏省博士后科学基金项目(1301009B).


Streaming data clustering using cooperative particle swarm optimization
Author:
Affiliation:

School of Information and Electrical Engineering,China University of Mining and Technology,Xuzhou 221116, China.

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对流数据的实时、有序和维数高等特点, 提出一种基于多种群协同微粒群优化的流数据聚类算法. 该算法利用变量分而治之的思想, 多个种群协同优化多个类中心, 进而求出问题完整的类中心集合. 给出一种类中心变化趋势的预估策略, 以快速追踪环境变化. 为防止多个子微粒群同时优化一个类中心, 提出一种相似子微粒群的合并策略. 最后将所提出的算法用于多个数据集, 实验结果验证了算法的有效性.

    Abstract:

    Focusing on the stream data real time performance, orderliness, and high dimension, a streaming data clustering algorithm based on cooperative particle swarm optimization is proposed, which divides sequential stream data into several data subsets according to the time stamp. For any data subset, the high-dimensional clustering problem is firstly transformed into the low dimensional sub-problem with only one class center. Then, one sub-swarm optimizes one clustering sub-problem independently, and all the sub-swarms cooperate with each other to find the whole solution of the streaming data. Moreover, in order to enhance the speed of tracking the environment changes, a forecast strategy is designed to predict the change trend of class centers. In order to avoid multiple sub-swarms repeatedly searching for the same class center, a merging strategy of similar sub-swarms is proposed. Finally, the proposed algorithm is applied to multiple data sets, and experimental results
    show the effectiveness.

    参考文献
    相似文献
    引证文献
引用本文

张勇 夏长红 巩敦卫 荣淼.基于多种群协同微粒群优化的流数据聚类算法[J].控制与决策,2016,31(10):1879-1883

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2015-08-18
  • 最后修改日期:2016-03-16
  • 录用日期:
  • 在线发布日期: 2016-10-20
  • 出版日期:
文章二维码