高维多峰函数的量子行为粒子群优化算法改进研究
DOI:
CSTR:
作者:
作者单位:

首都经济贸易大学

作者简介:

田瑾

通讯作者:

中图分类号:

基金项目:

北京自然科学基金


An Improvement of Quantum-behaved Particle Swarm Optimization Algorithm for High-dimensional and Multi-modal Function
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对群智能优化算法求解高维多峰函数时,难以优化粒子每一维和易陷入局部极值点问题,在分析了量子行为粒子群优化(QPSO)算法机理的基础上,对QPSO算法进行改进:采取前后代粒子逐维对比优化,以及构造一种新的调控收缩-扩张系数的函数。实验结果表明,改进算法在收敛精度与收敛速度上都十分显著地优于QPSO算法,而且具有很强的避免陷入局部最优的能力,非常适合求解高维、多峰优化问题。

    Abstract:

    For swarm intelligence optimization algorithm of solving high-dimensional and multi-modal functions, it is difficult to optimize the particles for each dimension and it is easy to fall into local extreme point. On the basis of analyzing the mechanism of quantum- behaved particle swarm optimization (QPSO) algorithm, the QPSO algorithm is improved: to compare each dimension of the previous generation particle with the later generation to optimize and to construct a new control function of the contraction-expansion coefficient. The experimental results show that the improved algorithm are significantly outperforms the QPSO algorithm in convergence accuracy and convergence rate. Specifically, it is of strong ability to avoid falling into the local optimum. It is very suitable for solving high-dimensional and multi-modal optimization problems.

    参考文献
    相似文献
    引证文献
引用本文

田瑾.高维多峰函数的量子行为粒子群优化算法改进研究[J].控制与决策,2016,31(11):1967-1972

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2015-09-12
  • 最后修改日期:2016-01-21
  • 录用日期:
  • 在线发布日期: 2016-11-20
  • 出版日期:
文章二维码