基于ESO的一类线性时变系统自学习滑模控制方法
DOI:
CSTR:
作者:
作者单位:

长沙理工大学

作者简介:

曾喆昭

通讯作者:

中图分类号:

TP113

基金项目:


Self-learning sliding mode control method of a class of linear time-varying systems based on ESO
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对一类线性时变系统的控制问题,提出了一种基于扩张状态观测器的自学习滑模控制方法。该方法首先设计了两种非线性光滑函数, 然后将两种光滑函数分别应用于扩张状态观测器和滑模趋近律的设计。为了进一步提高系统的自适应控制能力, 使用最速下降法对滑模控制器的增益参数进行自学习镇定。仿真结果表明了该控制方法不仅响应速度快、控制精度高, 而且有效解决了现有理论方法难以解决的问题, 因而是一种有效的不依赖于被控对象模型的LTV系统控制方法。

    Abstract:

    In this paper, self-learning sliding mode control (SLSMC) method is proposed for a class of linear time-varying systems (LTV) based on extended state observer (ESO). This method firstly designed two kinds of nonlinear smooth function (NSF), and then two smooth function were applied to the design of the extended state observer and the sliding mode reaching law. In order to further improve adaptive control ability of linear time-varying systems, the steepest descent method is used to update gain parameters of sliding mode controller through self-learning algorithm. Simulation results show that the proposed control method has not only fast response and high control precision, but also effectively solves the problem that the existing theoretical methods are difficult to solve. Hence it is an effective control method independent of the model of the controlled LTV systems.

    参考文献
    相似文献
    引证文献
引用本文

曾喆昭 吴亮东 陈韦名.基于ESO的一类线性时变系统自学习滑模控制方法[J].控制与决策,2016,31(11):2101-2105

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2015-10-15
  • 最后修改日期:2016-03-16
  • 录用日期:
  • 在线发布日期: 2016-11-20
  • 出版日期:
文章二维码