基于广义“灰度不减”公理的区间灰数预测模型
CSTR:
作者:
作者单位:

南京航空航天大学经济与管理学院,南京210016.

作者简介:

叶璟

通讯作者:

中图分类号:

N945.1

基金项目:

国家自然科学基金项目(71071077, 71371098, 71503103);江苏高校哲学社会科学重点研究基地重大项目(2012JDXM005);江苏省普通高校研究生科研创新计划项目(KYZZ15 0095);中央高校基本科研业务费专项资金项目.


Grey prediction model of interval grey numbers based on axiom of generalized non-decrease grey degree
Author:
Affiliation:

College of Economics and Management,Nanjing University of Aeronautics and Astronautics,Nanjing 210016, China.

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    区间灰数是灰色预测的基本研究对象之一, 针对其中蕴含的灰度信息, 在充分挖掘和拓展“灰度不减”公理的基础上, 建立基于广义“灰度不减”公理的区间灰数预测模型. 通过准灰度因子对区间灰数上下界进行灰度最大化处理, 保证建模过程中的灰度不减, 并根据区间灰数序列灰度走势得到的灰度因子进一步修正模型, 提高预测的可靠性. 最后通过实例验证了模型的有效性和实用性.

    Abstract:

    The sequence of interval grey numbers is a kind of basic research objects of grey prediction. Based on grey degree information contained in the interval grey numbers, a grey model of interval grey numbers based on the axiom of generalized non-decrease grey degree is established by fully excavating and expanding the connotation of non-decrease grey degree axiom. To be specific, the upper and lower bounds of interval grey numbers are unifiedly processed by using the quasi grey factor to maximize each interval grey number’s grey degree, which can ensure the fulfillment of the axiom of “non-decrease grey degree”in the subsequent modeling process. Then, according to the trend of grey degree sequence of interval grey numbers, the grey prediction model of grey degree sequence is predicted to obtain grey factor which can correct the reliability of the previous model deeply. Finally, the effectiveness and practicability of the proposed model are verified by empirical results.

    参考文献
    相似文献
    引证文献
引用本文

叶璟 党耀国 丁松.基于广义“灰度不减”公理的区间灰数预测模型[J].控制与决策,2016,31(10):1831-1836

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2015-10-20
  • 最后修改日期:2015-12-31
  • 录用日期:
  • 在线发布日期: 2016-10-20
  • 出版日期:
文章二维码