多粒度犹豫模糊语言环境下未知权重的多属性群推荐方法
CSTR:
作者:
作者单位:

1. 合肥工业大学管理学院,合肥230001;
2. 安徽新华学院信息工程学院,合肥230088.

作者简介:

陈秀明

通讯作者:

中图分类号:

C934

基金项目:

国家自然科学基金重大项目(71490725); 国家973 计划项目(2013CB329603); 国家自然科学基金项目(71371062);安徽省教育厅重点自然科学项目(KJ2015A300).


Method of group recommender systems with unknown attribute weights in a multi-granular hesitant fuzzy linguistic term environment
Author:
Affiliation:

1. School of Management,Hefei University of Technology,Hefei 230001,China;
2. School of Information Engineering,Anhui Xinhua University,Hefei 230088,China.

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对群推荐中存在的多粒度、犹豫性、模糊性语言信息问题, 提出多粒度犹豫模糊语言环境下未知权重的多属性群推荐方法. 首先, 提出多粒度犹豫模糊语言术语集的概念, 定义其距离公式; 然后, 在多粒度犹豫模糊语言环境下, 针对属性权重完全未知的情况, 建立目标规划模型, 利用拉格朗日方程求解, 针对属性权重不完全未知的情况, 建立线性规划模型求解; 最后, 通过算例计算和分析表明了上述模型求解权重问题是有效的.

    Abstract:

    For the problem that multi-granularity, hesitation, fuzziness exist in the linguistic information expressed by individuals, a method of group recommender systems with unknown attribute weights in a multi-granular hesitant fuzzy linguistic term environment is proposed. Firstly, the concept of multi-granular hesitant fuzzy linguistic term sets(MHFLTS) is defined. A variety of distance measures between two MHFLTSs are defined. Then, when the attribute weights are completely unknown, the objective programming model is established. The weights are obtained by using the Lagrange equation model. When attribute weights are incomplete unknown, the weights are obtained by solving a linear programming model. Finally, the movies recommendation is employed as an example to introduce the algorithm of the group recommendation, which shows the effectiveness of the proposed model in solving the group recommendation.

    参考文献
    相似文献
    引证文献
引用本文

陈秀明 刘业政.多粒度犹豫模糊语言环境下未知权重的多属性群推荐方法[J].控制与决策,2016,31(9):1631-1637

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2015-10-22
  • 最后修改日期:2016-02-18
  • 录用日期:
  • 在线发布日期: 2016-09-20
  • 出版日期:
文章二维码