一种基于密度和网格的簇心可确定聚类算法
CSTR:
作者:
作者单位:

(浙江工业大学信息工程学院,杭州310023)

作者简介:

何熊熊(1965-), 男, 教授, 博士生导师, 从事重复学习控制、网络控制系统等研究;管俊轶(1991-), 男, 硕士生, 从事数据挖掘的研究.

通讯作者:

E-mail: hxx@zjut.edu.cn

中图分类号:

TP18

基金项目:

国家自然科学基金项目(61473262).


A density-based and grid-based cluster centers determination clustering algorithm
Author:
Affiliation:

(College of Information Engineering,Zhejiang University of Technology,Hangzhou 310023,China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    以网格化数据集来减少聚类过程中的计算复杂度,提出一种基于密度和网格的簇心可确定聚类算法.首先网格化数据集空间,以落在单位网格对象里的数据点数表示该网格对象的密度值,以该网格到更高密度网格对象的最近距离作为该网格的距离值;然后根据簇心网格对象同时拥有较高的密度和较大的距离值的特征,确定簇心网格对象,再通过一种基于密度的划分方式完成聚类;最后,在多个数据集上对所提出算法与一些现有聚类算法进行聚类准确性与执行时间的对比实验,验证了所提出算法具有较高的聚类准确性和较快的执行速度.

    Abstract:

    A density and grid based cluster centers determination clustering algorithm is proposed. The computational complexity of the clustering process is reduced by using the gridding dataset. Firstly, the dataset space is divided into grids with the same size, and the number of data objects that are contained in grid is defined as the value of the grid density. The nearest distance from one grid to another with higher density is defined as the value of grid distance. The cluster center grids can be found since these grids always have high density value and large distance value. Then, a density-based division approach is used to accomplish the task of clustering. Finally, a comprehensive comparison is carried out to examine the clustering accuracy and execution time between the proposed clustering algorithm and some classical algorithms. Experiment results show that the proposed algorithm can lead to a higher accuracy with less execution time.

    参考文献
    相似文献
    引证文献
引用本文

何熊熊,管俊轶,叶宣佐,等.一种基于密度和网格的簇心可确定聚类算法[J].控制与决策,2017,32(5):913-919

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2017-05-11
  • 出版日期:
文章二维码