基于移动数据窗的传递函数多新息随机梯度辨识方法
CSTR:
作者:
作者单位:

(1. 江南大学物联网工程学院,江苏无锡214122;2. 无锡商业职业技术学院物联网技术学院,江苏无锡214153)

作者简介:

徐玲(1976-), 女, 副教授, 博士, 从事系统建模、系统辨识等研究.

通讯作者:

E-mail: lingxu0848@163.com

中图分类号:

TP273

基金项目:

国家自然科学基金项目(61273194);江苏省高校自然科学基金项目(16KJB120007);江苏省“青蓝工程”资助项目.


Moving data window based multi-innovation identification stochastic gradient parameter identification method for transfer functions
Author:
Affiliation:

(1. School of the Internet of Things Engineering,Jiangnan University,Wuxi 214122,China;2. School of the Internet of Things Technology,Wuxi Vocational Institute of Commerce,Wuxi 214153,China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    一些工业过程可以近似用一个传递函数描述,结合统计辨识方法和非线性优化策略提出传递函数参数辨识方法.该方法采用动态数据方案,使用系统观测数据获得系统更多的模态信息.基于动态观测数据,提出传递函数随机梯度参数辨识方法.为进一步提高辨识精度,利用动态窗数据将随机梯度参数辨识方法中的标量新息扩展为新息向量,提出传递函数多新息随机梯度参数估计方法.最后通过仿真例子对所提出的方法进行了性能分析和模型验证.

    Abstract:

    For industrial process transfer functions, this paper proposes a parameter estimation method combining the statistical identification method and the nonlinear optimization strategy. In order to obtain enough system modal information, a moving data window is used to deduce the identification method. Based on the dynamical measured data, a stochastic gradient parameter estimation algorithm is presented. In order to improve the estimation accuracy, a multi-innovation stochastic gradient parameter identification method is proposed for transfer functions by expanding the innovation scalar into the innovation vector. Finally, a simulation example is given to compare the proposed methods. Meanwhile the performance of the proposed algorithms is analyzed and the estimated models are verified by step response tests.

    参考文献
    相似文献
    引证文献
引用本文

徐玲.基于移动数据窗的传递函数多新息随机梯度辨识方法[J].控制与决策,2017,32(6):1091-1096

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2017-06-16
  • 出版日期:
文章二维码