深度学习在故障诊断领域中的研究现状与挑战
CSTR:
作者:
作者单位:

(1. 重庆大学自动化学院,重庆400044;2. 电力传输设备与系统安全国家重点实验室,重庆400044;3. 航天发射场可靠性技术重点实验室,海口570100)

作者简介:

任浩(1990-), 男, 博士生, 从事智能控制系统、模式识别与匹配、故障诊断的研究;柴毅(1962-), 男, 教授, 博士生导师, 从事信息融合、故障诊断、控制理论与应用等研究.

通讯作者:

E-mail: qujianfeng@cqu.edu.cn

中图分类号:

TP277

基金项目:

国家自然科学基金项目(61275162);重庆市基础与前沿研究计划项目(cstc2016jcyjA0504).


Deep learning for fault diagnosis: The state of the art and challenge
Author:
Affiliation:

(1. School of Automation,Chongqing University,Chongqing 400044,China;2. State Key Laboratory of Power Transmission Equipment and System Security and New Technology,Chongqing 400044,China;3. Key Laboratory of Space Launching Site Reliability Technology,Haikou 570100,China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    现代工业系统已呈现出向大型化、复杂化的方向发展,使得针对工业系统的故障诊断方法遇到一系列的技术难题.近年来,深度学习(deep learning)在特征提取与模式识别方面显示出独特的优势与潜力,将深度学习应用于解决复杂工业系统故障诊断的研究已初现端倪.为此,首先介绍几种典型的基于深度学习方法实现工业系统故障诊断方法;然后对基于深度学习实现故障诊断的主要思想和建模方法进行描述;最后总结和讨论了复杂工业系统故障的特点,并探讨了深度学习在实现复杂工业系统故障诊断方面所面临的挑战,展望了未来值得继续研究的方向.

    Abstract:

    Modern industrial system has been developed into the direction of more and more larger and complex, which makes the fault diagnosis for industrial system present a series of technical problems. In recent years, deep learning has shown its unique potentials and advantages in feature extraction and pattern recognition. And the application of deep learning to achieve fault diagnosis of complex industrial systems has begun on its initial exploration stage. In this paper, several typical methods based on deep learning have been introduced first, which can be employed to realize the fault diagnosis for industrial system. And then, the main idea and model approach for fault diagnosis based on deep learning have been described. Finally, the characteristics of faults in complex industrial system have been summarized and discussed, and the challenge of deep learning in realizing the fault diagnosis for complex industrial system has also been studied and discussed.

    参考文献
    相似文献
    引证文献
引用本文

任浩,屈剑锋,柴毅,等.深度学习在故障诊断领域中的研究现状与挑战[J].控制与决策,2017,32(8):1345-1358

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2017-07-17
  • 出版日期:
文章二维码