基于协作表示Boosting 的辐射源多传感器融合识别
CSTR:
作者:
作者单位:

(海军工程大学电子工程学院,武汉430033)

作者简介:

周志文(1989-), 男, 博士生, 从事辐射源识别、信息融合的研究;黄高明(1972-), 男, 教授, 博士生导师, 从事盲信号处理、无源探测等研究.

通讯作者:

E-mail: mini_paper@sina.com

中图分类号:

TP974

基金项目:

国家自然科学基金项目(61501484);国家863计划项目(2014AA7014061).


Emitter identification of multi-sensor fusion based on collaborative representation and Boosting
Author:
Affiliation:

(College of Electronic Engineering,Naval University of Engineering,Wuhan 430033,China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    由于单传感器辐射源识别的局限性,在低信噪比条件下仅提高单侦测平台的识别能力无法满足实际需求,为此提出基于协作表示Boosting的辐射源多传感器融合识别算法.利用多传感器数据信息的冗余性和互补性,对多处理支路采用时频分析提取特征,并由协作表示分类器求得残差.根据Boosting在训练阶段的权重组合得到最小分类残差,实现多传感器决策域的融合识别.仿真实验结果验证了所提出方法有效性,并且在低信噪比情况下噪声鲁棒性更优异,易于实现.

    Abstract:

    For the restrictions of emitter identification based on single sensor, simply improving the performance of single surveillance platform no longer meets the practical demands in low signal-to-noise ratio(SNR). Thus an algorithm of emitter identification of multisensory fusion based on collaborative representation and Boosting is proposed. By virtue of redundancy and complementarity of multisensory data information, feature extraction is implemented with time-frequency analysis, and multi-branch residuals are obtained through collaborative representation-based classifiers. The minimum classification residuals are acquired according to the weights in the Boosting training phase, in consequence the decision-level fusion identification is implemented. Simulation results show the effectiveness of the proposed algorithm, and show more robustness to noise when the signal-to-noise ratio is relatively low. Meanwhile, the proposed framework is easy to be conducted.

    参考文献
    相似文献
    引证文献
引用本文

周志文,黄高明,高俊.基于协作表示Boosting 的辐射源多传感器融合识别[J].控制与决策,2017,32(8):1481-1485

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2017-07-17
  • 出版日期:
文章二维码