二维分割贯序正则化超限学习机
CSTR:
作者:
作者单位:

(1. 南京航空航天大学计算机科学与技术学院,南京210016;2. 盐城师范学院信息工程 学院,江苏盐城224002;3. 中国民航大学计算机科学与技术学院,天津300300)

作者简介:

郭威(1983-), 男, 讲师, 博士生, 从事数据挖掘、机器学习的研究;徐涛(1962-), 男, 教授, 博士生导师, 从事数据挖掘、智能信息处理等研究.

通讯作者:

E-mail: xutao@nuaa.edu.cn

中图分类号:

TP183

基金项目:

国家自然科学基金项目(61603326,61379064,61273106);国家科技支撑计划课题(2014BAJ04B02).


Bidimensionally partitioned sequential regularized extreme learning machine
Author:
Affiliation:

(1. School of Computer Science and Technology,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China;2. School of Information Engineering,Yancheng Teachers University,Yancheng 224002,China;3. School of Computer Science and Technology, Civil Aviation University of China, Tianjin 300300, China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对大规模在线学习问题,提出一种二维分割贯序正则化超限学习机(BP-SRELM).BP-SRELM以在线贯序超限学习机为基础,结合分治策略的思想,从实例和特征两个维度对高维隐层输出矩阵进行分割,以降低问题求解的规模和计算复杂性,从而极大地提高对大规模学习问题的执行效率.同时,BP-SRELM通过融合使用Tikhonov正则化技术进一步增强其在实际应用中的稳定性和泛化能力.实验结果表明,所提出的BP-SRELM不仅具有更高的稳定性和预测精度,而且在学习速度上优势明显,适用于大规模数据流的在线学习与实时建模.

    Abstract:

    To solve the large-scale online learning problem, this paper proposes a bidimensionally partitioned sequential regularized extreme learning machine(BP-SRELM). Based on the online sequential extreme learning machine, combining the divide-and-conquer strategy, the BP-SRELM partitions a high-dimensional hidden layer output matrix into several small matrices from the aspects of instance dimension and feature dimension, so as to reduce the scale and the complexity of the problem, and consequently, the execution efficiency of the algorithm for large-scale learning problem is significantly improved. Meanwhile, the Tikhonov regularization technology is incorporated in the BP-SRELM to further enhance the stability and the generalization capability of the algorithm in real applications. Experimental results show that the proposed BP-SRELM can provide better performances in the sense of stability and prediction accuracy with greatly improved leaning speed than its counterparts, and it can be applied to the online learning and real-time modeling of large-scale data streams.

    参考文献
    相似文献
    引证文献
引用本文

郭威,徐涛,于建江,等.二维分割贯序正则化超限学习机[J].控制与决策,2017,32(9):1556-1564

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2017-09-08
  • 出版日期:
文章二维码