昂贵区间多目标优化空间数据挖掘求解策略
CSTR:
作者:
作者单位:

(燕山大学工业计算机控制工程河北省重点实验室,河北秦皇岛066004)

作者简介:

陈志旺(1978-), 男, 副教授, 从事多目标优化、多属性决策等研究;赵子铮(1990-), 男, 硕士生, 从事多目标优化的研究.

通讯作者:

E-mail: 58052134@qq.com

中图分类号:

TP273

基金项目:

国家自然科学基金项目(61573305,61403332);河北省自然科学基金青年基金项目(F2014203099, F2015203400);燕山大学青年教师自主研究计划课题(13LGA006).


Spatial data mining strategy for expensive interval multi-objective optimization
Author:
Affiliation:

(Key Lab of Industrial Computer Control Engineering of Hebei Province,Yanshan University,Qinhuangdao 066004,China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对优化函数未知的昂贵区间多目标优化问题,提出一种基于主曲线建模的NSGA-II算法.该算法首先根据决策空间流形分布的种群数据构建K主曲线;然后利用所构建的K主曲线模型,通过插值和延展的方法生成子代.与遗传算法的随机生成子代策略相比,通过所提出方法生成有效子代效率会更高.由于目标空间拥挤距离无法求出,为此利用K主曲线找出待测解的前、后近距离解,按照决策空间拥挤距离对同序值解进行筛选,从而实现NSGA-II算法的改进.

    Abstract:

    In this paper, an improved NSGA - II algorithm is proposed based on the principal curve modeling for solving the expensive interval multi-objective optimization with unknown objective function. Firstly, the proposed algorithm builds a K principal curve using the population data of the manifold distribution in decision space. Then, a new offspring is generated through interpolation and extension according to the built K principal curve, and the proposed strategy of offspring generation is more efficient than that of random offspring generation in the genetic algorithm. Finally, because of the absence of the crowding distance in objective space, the closest solutions before and after the candidate solution can be found based on the built K principal curve, so the solutions with same sequence are screened by crowding distance in decision space, thus the NSGA-II is improved.

    参考文献
    相似文献
    引证文献
引用本文

陈志旺,赵子铮,姚嘉楠,等.昂贵区间多目标优化空间数据挖掘求解策略[J].控制与决策,2017,32(9):1599-1606

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2017-09-08
  • 出版日期:
文章二维码