基于K近邻证据融合的故障诊断方法
CSTR:
作者:
作者单位:

(1. 杭州电子科技大学自动化学院,杭州310018;2. 重庆交通大学信息科学与工程学院,重庆400074)

作者简介:

侯平智(1968-), 男, 教授, 从事基于数据驱动的状态监控与故障诊断等研究;徐晓滨(1980-), 男, 教授, 从事智能信息融合与复杂系统可靠性评估、故障诊断与预测等研究.

通讯作者:

E-mail: xuxiaobin1980@163.com

中图分类号:

TP391

基金项目:

国家自然科学基金项目(61433001,61374123,61573076,61573275);浙江省公益性技术应用研究计划项目(2016C31071);重庆市高等学校优秀人才支持计划项目(2014-18).


Fault diagnosis based on KNN evidence fusion
Author:
Affiliation:

(1. School of Automation,Hangzhou Dianzi University,Hangzhou310018,China;2. School of Information Science and Engineering,Chongqing Jiaotong University,Chongqing400074,China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了兼顾数据建模的准确性和诊断的实时性,提出一种K近邻诊断证据融合新方法.利用故障特征 的历史样本构建随机模糊变量(RFV)形式的故障样板模式,由KNN算法获取测试样本的K个近邻历史样本,并定义它们的RFV待检模式;经样板和待检模式的匹配获取K个诊断证据,再将各特征的K个诊断证据融合,并作出故障决策;使用RFV实现对故障数据的精准建模,利用K个历史样本丰富诊断信息,并增加诊断的时效性.诊断效果在电机转子试验台上得到了验证.

    Abstract:

    A fault diagnosis method based on KNN evidence fusion is presented to keep a balance between modeling accuracy of fault feature data and instantaneity of diagnosis decision making. For each fault feature(symptom), its historical sample data are used to model fault template patterns(FTPs) with the form of random-fuzzy variable(RFV), the KNN algorithm is used to find out K historical samples nearest to a testing sample and the RFV-type fault testing patterns(TPs) of the K samples are presented to describe the testing sample. The matching degree between FTP and TP can be calculated to generate the K pieces of diagnosis evidence, and then all evidence coming from the different fault features can be fused and diagnosis decision can be made based on the fused result. In this method, the fine modeling can be realized by using the RFV, and meanwhile, the diagnosis information of the single testing sample can be enriched by adding the K historical samples, and the instantaneity of diagnosis can be improved. Finally, in diagnosis experiments on a rotor test bed, the effectiveness of the proposed method is verified.

    参考文献
    相似文献
    引证文献
引用本文

侯平智,张明,徐晓滨,等.基于K近邻证据融合的故障诊断方法[J].控制与决策,2017,32(10):1767-1774

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2017-09-30
  • 出版日期:
文章二维码